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Abstract 

In this study, we examine the development of body mass and sexual size dimorphism (SSD) in 178 
juvenile wild Danish red foxes from 99 litters using piecewise analyses of regression lines for age versus 

weight. When fox cubs are younger than 100 days, only slight (SSD=1.7%) and no significant difference 

(t-test: t=1.2, p=0.24) was found in the mean weight of males (2.03± kg) and females (1.93± kg), and 
no significant difference was found in the slope of regression lines for males and females (F=0.97E-5, 

p = 0.99). In the growth period between 100 days of age and mating around 275 days of age, the 

regression line in males steepens more than that of females (difference in slopes, F=5.9, p<0.02) and the 

difference in mean weight of the sexes become highly significant (SSD=7.4%, difference in mean t=4.6, 
p=2.2E-5). After mating the growth curve levels off i.e. the slope of the regression lines for age versus 

weight is not significantly different from zero. Yearly variation was revealed in the growth rate of 

juvenile foxes (difference in slope for males; F=3.9, p<0.01 and females; F=8.6, p<0.001).  
Conclusion: SSD in red foxes mainly develop as a result of a faster grow rate in males between 

indepency and maturity. Ontogony of red foxes may genetically be disposed to prevent males 

outcompeting females in the early stages of life (<100 days), when cubs are still fed by adults and the 
increase in SSD before mating, may be an adaption to selective forces benefitting larger males. The 

growth rate of juvenile foxes of both sexes is influenced by environmental variation in different years. 

Key words: body size, weight, cubs, ontogeny, sexual size dimorphism. 

 

Introduction  

The ontogeny of mammals depend not only on nutrition, but also on genetically predispositions linked 
to life strategies of the species. Within mammals, males are usually larger than females of the same 

species (Swanson et al., 2013). Sexual size dimorphism (SSD) is known to be particularly male biased 

(males being larger than females) in the orders of Pinnipeds (seals, sea lions and walruses), in northern 

elephant seals (Mirounga angustirostris) and the small species of the family Mustelidae e.g. weasel 
(Mustela nivalis), stoat (M. ermine)  and American mink (M. vison) (Moors, 1980; Thom et al., 2004; 

Cassini, 2017). But, also within mammals, exceptions exist, e.g. SSD is either small or absent in the 

http://ojs.univ-tlemcen.dz/index.php/GABJ
mailto:sup@bio.aau.dk


   Pagh et al, (2018) Gen. Biodv. J. 2(1):32-43  
 

 

 

 

 

  

      

 

 

   

    

 

   

  

  

 

 

 

  
   

   

  

  

   

 

 

monogamous species, racoon dogs (Nyctereutes procyonoides) and crab-eating foxes (Cerdocyon thous)

(Macdonald  &  Courteney,  1996  ;Kauhala,  1998) and  female  biased  in  the promiscuous  mating  cliff 
chipmunks  (Tamias  dorsalis)  and  the polygynous spotted hyena  (Crocuta  crocuta) (Frank,  1986;

Swanson et al., 2013; Kilanowski et al., 2016).

Selection of SSD in mammals

Male biased SSD may occur if fecundity selection in females involves a cost that increases as body size 
increases, then selection will go towards smaller females, and the larger body size of males may simply 
be an effect of females getting smaller (Cassini, 2017). Especially in larger mammals, female life-history 
parameters  related  to  fecundity  are  slower  or  energetically  more  costly;  hence,  natural  selection  in 
general  favors  small  body  size  in  mammal  females (Cassini,  2017).  Small  females  may  be favoured 
because they need  less energy for the daily  maintenance. By reducing their own  energy requirements 
females can channel  more into reproduction (Moors 1980; Thom et al. 2004). However, selection for 
larger males may also occur if males benefit from a larger body in agonistic fights over territory or mates

(Iossa et al., 2008; Cassini, 2017).

In  most  other  species  than  mammals,  the  size  of  females  has  been  hypothesized  to  be  positively 
correlated  to  fecundity,  referred  to  as  the “fecundity  hypothesis” (Fairbairn,  1997;  Fairbairn,  2005).. 
However, for mammals, female biased SSD in mammals may rather be related to competition for males 
or for resources such as territory or food rather than fecundity (Kilanowski, et al., 2016).

According  to Thom et  al., (2004), there  are  mainly  three  explanations  for  SSD:  1)  Sexual  selection, 
expressed either as competition for mates or as mate choice. A larger body size in males may be selected 
for due to dominance benefits, and hence increased mating opportunities. According to Korablev et al.

(2013), the degree of male biased SSD can be viewed as an indication of the degree of competition for 
females within a species. 2) Intrinsic differences in the reproductive roles of males and females could 
result in SSD, e.g. female mustelids may be small partly because it is more energetically efficient for 
reproduction (see also Moors, 1980). 3) SSD could arise through niche separation among the sexes of 
significantly different size, i.e. reducing competition for food between males and females. The optimum

size of each sex is therefore a result of different selective pressures (see also McDonald, 2002).

Ontogeny of SSD in mammals

In some species, sexual dimorphism in body mass occurs before or soon after birth, e.g. in earless-and 
true seals (Kovacs et al., 1986), whereas other species develop SSD when they approach sexual maturity, 
e.g. in bighorn sheep (Ovis Canadensis) and cliff chipmunk (Tamias dorsalis) (Festa-Bianchet et al., 
2000; Kilanowski et al., 2016). In cliff chipmunks, SSD is female biased. In this species, females and 
males are the same size at birth, but within two months, a clear difference is evident between the sexes
(Kilanowski et  al., 2016).  Similar  ontogeny  of  SSD  was  found  in  bighorn  sheep  (Ovis  Canadensis), 
where juveniles are identical in size at birth, but within three months, males become heavier than females

(Festa-Bianchet et al., 1996). Some species do not develop SSD until after the first reproductive event, 
e.g.  female  southern  flying  squirrels  (Glaucomys  volans)  are  larger  than  males,  nevertheless  females 
were not significantly larger or heavier than males at first reproduction, but were about 7% heavier and 
22% larger than males at the second breeding (Fokidis et al., 2007).

In mammals, SSD typically appears after gonadal differentiation in connection with the production of 
sex-related hormones, such as estradiol and testosterone. These hormones influence both the expression 
of sex-specific phenotypes as well as sex-specific behaviours by changing brain functions (Kimura & 
Matsuyama, 2012).

O'Mara  (2012) defines  three  different pathways  for  the  ontogeny  of SSD:  1) The  most  common  and 
simplest way to SSD is “bimaturism” where one sex grow for a longer period of time than the other, but 
at the same rate, e.g. in haplorrhine monkeys males grow for 10% longer time than females. Bimaturism 
may  be  a response  to  strong  intrasexual  (male)  competition  where  access  to  mates  is  related  to  body

size. 2) Males and females grow at different rates for the same duration, e.g. if males grow at a faster
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rate, SSD will be male biased. Rate differences occur at the end of the growth period near the onset of 

sexual maturity that greatly accelerates body mass growth. 3) A combination of rate and duration 

differences may produce SSD in adults. Rate and duration of growth may respond to selection 
independently of each other, and the combination of rate and timing differences of males and females 

may reflect complex interactions of both intrasexual and intersexual competition.  

Studies of the size of adult red foxes (Vulpes vulpes) show that SSD is male biased and that average 
SSD ranges between 4.4% and 7.7% in Europe and North America and that SSD may not only vary 

geographically, but also locally during different time periods (Cavallini, 1995; Pagh et al., 2017).  

The weight of fox cubs in the wild are difficult to obtain, and to our knowledge, there has not been any 
evaluation of the ontogeny of body mass and SSD in wild foxes. Most previous studies of cub weights 

are from foxes held under semi natural conditions (Storm et al., 1966; Storm, 1976; Sargeant 1978). 

Others present data on the weight of juvenile red foxes, but they do not separate males from females, 

hence SSD cannot be interpreted (Vogtsberger et al., 1973; Kolb & Hewson, 1980a). 

Aims of the investigation 

The aims of this study is: 1) To present rare data on the ontogeny of Danish red fox cubs and 2) to 

examine if development of SSD in red foxes is a result of different growth rates of the sexes or due to 
bimaturism, 3) to test if the development of body mass of juvenile foxes is influenced by yearly 

environmental conditions and 4) to discuss possible life history strategies behind the ontogeny of red 

foxes. 

Materials and methods 

Data on the weight of foxes from the period 1965-1977 were found alongside their associated 202 

skeletons (no. 13000 to 13202) at the Natural History Museum, Aarhus. Of these, 178 individuals from 
99 litters had been ear tagged as cubs or juveniles (less than one year) in a mark-recapture study by 

(Jensen, 1973). The foxes were mainly from the Danish peninsula of Jutland: 128 from Mid Jutland; 19 

 

 

 

  

   

 

 

  

from Northern Jutland; 10 from Southern Jutland. In addition, 19 were from the island of Zealand and 
two  were  from  the  island  of  Bornholm.  The  majority  of  the  recaptured  foxes  (152)  were  shot  during 
hunting,  12  were  found  newly  dead  or  put  down,  eight  were  killed  by  cars  or  harvesters,  three  were 
killed by dogs and three died of other causes. Ten of the recovered foxes, which were found dead were 
removed from the data set, to prevent bias in mean weights due to illness or decomposing. Individuals 
were weighed when ear tagged (170 cubs) and later when they were recovered dead.

The birth date of red foxes in Denmark has not been studied, yet based on Lloyd & Englund, 1973(1973)
and the latitude of Denmark, we can assume that most cubs are born between mid-March and the first 
week of April. The age of each fox was estimated as the number of days between 1stApril in the year 
that the cub was ear tagged and the time of death. Foxes less than six months old were classified as cubs

(Harris & Trewhella, 1988), and foxes less than one year as juveniles.

The software PAST was used for statistical analyses (Hammer et al. 2001). The main data set was not 
normally  distributed  due  to  the  sampling  method;  Data  were  collected  in  two  main  periods  1)  cubs

(caught for earmarking) mainly within their first eight weeks of life or adults (recovered) mainly more 
than six  month  of age. The red  fox  in Denmark  is protected by  law  during the breeding season  from 
February to September. Therefore, few foxes were recovered during their first six months of life.

To understand how growth rate affects the development of body mass and SSD, a piecewise regression 
model  was  fitted  to  the  data  following O'Mara,  (2012).  To  describe  the  ontogeny  of  red  foxes  three

growth periods were chosen:

1. Between birth and 100 days of age, the duration of this period was based on the development of the

regression lines of males and females with 95% confidence interval.

2.  From  100  days  of  age  to  the  first  mating  (i.e.  sexual  maturity).  Oestrus  starts  in  Danish  foxes  in

December, hence around 275 days of age (Lloyd, 1980).
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3. From sexual maturity (275 days) to one year of age.  

Data within the three growth periods were normally distributed (tested by Shapiro-Wilk’s test; 

p(normal)<0.15, between 100 and 275 days; p(normal)<0.11 and between 275 and one year; 

p(normal)<0.93. t-test was used to compare the mean weights of males and females. 

Least square and Generalized Linear Model (GLM) was used to examine the age versus weight of the 

three periods and association between male and female age versus weight (SSD). The slopes of the 
regression lines were compared by Pearsons- product-moment correlation test and ANCOVA. Also, 

possible yearly variations in growth development of juveniles (within their first year) between the years 

1966-1969 (only years with data from minimum ten litters in one year) were examined using Least 
square regression and GLM. Regression lines were tested for differences in slope and intercept. SSD 

was calculated as the percent difference between the cube root of the mean weight of males and females 

following Cavallini, (1995). 

Results 

Growth period 1. Cubs younger than 100 days of age 

Table 1. Ontogeny of body mass of male (M) and female (F) Danish red foxes and SSD in three different 
growth periods; 1) 1st April to mid-June, cubs feed by adults at the den. 2) Mid-June to December. From 

independency of cubs to mating season. 3) December to 1st April. Mating and breeding season. N = 

number of weight data, A denotes ANCOVA and GLM Generalized linear model. S.E. =standard error 

mean. SSD = % of difference between the square root in body mass of males and females. 

 

 

 

 

The average weight of cubs caught between 23 days and one month of age from 1st April was 1.3±0.1S.E. 
kg (range 0.8-1.7, n=13). The mean weight of foxes younger than around 100 days old was 2.03±0.1S.E. 
kg  for  males  (n=96)  and  1.93±0.1S.E.  kg  for  females  (n=71),  hence  SSD=1.7%.  No  significant 
difference  in  mean  body  weight  between  males  and  females  was  detected  at  this  stage  of  life  (t=1.2, 
p=0.24, t-test) (Table 1). Likewise, the slopes of the regression lines for male and female cubs younger 
than 100 days old did not differ significantly (F=1.97E-5, p=0.99) (Table 1). The slope and intercept 
found by least square regression lines and GLM was identical (Table 1).

Growth period 2. Juveniles between 100 days of age and mating (275 days)
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Growth period 1 

(<100 days of age) 

M          F 

Growth period 2 

(100> <275 days) 

M          F 

Growth period 3 

(275> <365 days) 

M          F 

N 97       69 37       28 15         13 

Slope 

Least square 

GLM 

0.0294         0.0293 

0.0294         0.0293 

0.0219         0.0132 

0.0219         0.0132 

-0.0099    -0.0201 

-0.0099    -0.0201 

Intercept 

Least square 

GLM 

0.5852        0.5255 

0.5852        0.5255 

1.8853         2.504 

1.8853         2.504 

9.709         11.495 

9.709         11.495 

R
2
         0.34            0.35 0.63             0.54 0.05            0.21 

Comparison between slopes  

ANCOVA 

F=1,97E-5 

p=0.99 

F=5.85 

p<0.02 

F=0.31 

p<0.58 

GLM 

p(slope=0) 
3.9E-12       2.8E-9 2.6E-15    3.2E-8 0.41       0.09 

Mean weight (±S.E.) kg 

T-test 

2.03             1.93 

(±0.07)       (±0.07) 

t=1.2, p=0.24 

6.3             5.0 

(±0.20)       (±0.19) 

t=4.6, p<2.2E-5 

6.7             5.4 

(±0.23)       (±0.19) 

t=5.3, p<2.9E-6 

SSD 1.7% 7.4% 6.9% 
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The mean weight between 100 days of age and mating was 6.3±0.2S.E. kg for males (n=37) and 

5.0±0.2S.E. kg for females (n=28) (SSD=7.4%). The difference in mean body weight between males 

and females was highly significant (t=4.6, p<2.2E-5, t-test) (Table 1). The slope of the regression lines 
for age versus weight for males and females in this growth period differed significantly (F=5.9 p <0.02) 

with a steeper slope for male foxes than for females (Table 1). The GLM regression lines were identical 

to least square regression lines (Table 1).  

Growth period 3. From mating to one year of age 

The mean weight of foxes between 275 days of age and one year was 6.7±0.2S.E. kg for males (n=15) 

and 5.4±0.2S.E. kg for females (n=13). The difference in mean body weight between males and females 
was significant (SSD =6.9%, t=5.3, p<2.9E-6, t-test) (Table 1). During this growth period, the slopes of 

the regression lines for both males (- 0.0099) and females (-0.0201) were marginally negative. For both 

sexes the slopes of the regression lines were not significantly different from zero; p (slope=0)<0.41, 

GLM and p (slope=0)<0.09, GLM, for males and females, respectively (Table 1). Although the growth 
curve levels off in this period, one-year-old foxes were found to be slightly heavier than juvenile foxes 

between 275 days and one year; mean weight of one-year-old males and females were 7.2 ±0.3S.E kg 

and 5.9 ±0.1S.E kg, respectively. 

Yearly variation in the body size of juvenile foxes 

Table 2A. The slope and intercept of regression lines for age versus weight for juvenile Danish red fox 

males during the years 1966 to 1969, using GLM Generalized linear model. 

Year ofNo.

litters 

Slope Intercept G P(slope=1) 

1966 13 0.024 0.57 220.98 5.5E-50 

1967 10 0.020 1.27 32.10 1.5E-8 
1968 27 0.018 1.73 154.09 2.2E-35 

1969 38 0.023 0.94 623.00 1.6 E-137 

 
Table 2B. Significance table for males. Comparisons of slopes and intercepts of regression lines for age 

versus weight of juvenile male red foxes in the years 1966 to 1969. The upper cells show the tests for 

differences in slope, and the lower cells show the tests for differences in intercept. L= number of litters, 

N=data points 

 
Year 

Slope/ 
Intercept 

1966 

L=13 
N = 32 

1967 

L=10 
N = 13 

1968 

L=27 
N = 34 

1969 

L=38 
N = 68 

1966  
F = 1.9 

p = 0.17 

F = 7.8 

p < 0.01 

F =0.40 

p <0.53 

1967 
F = 3.7, p =  0.19 

t  = 2.0, p =0.05 
 

F = 0.17 

p = 0.68 

F = 2.16 

p = 0.15 

1968 
F = 1.2, p = 0.54 

t = 3.2, p <  0.003 

F = 2.8, p = 0.03 

t = 0.7, p = 0.50 
 

F = 9.7 

p < 0.01 

1969 
F = 2.0, p < 0.02 
t = 1.4, p = 0.22 

F = 4.4, p = 

0.0001 

t = 0.8, p = 0.41 

F = 1.6, p = 0.11 
t = 3.2, p < 0.002 

 
 

Yearly variation in the slopes of the regression line for age versus weight was found for both sexes of 

juvenile foxes in the years from 1966 to 1969 (males; F=3.9, p<0.01, females; F=8.6, p<0.001), hence 

cubs grew faster in some years than others. Also, the intercepts differed significantly from year to year 

indicating a difference in the birth weight of cubs between the years. 
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For juvenile males, the slope of the regression line for age versus weight was steeper in 1966 than in 

1968 (F= 7.8, p < 0.01), and the intercept for 1966 was lower than in 1967 (F = 3.7, p = 0.19, t  = 2.0, p 

=0.05) and 1968  (F = 1.2, p = 0.54 t = 3.2, p < 0.003), although only marginally significantly different 
from 1967 (Figure 2A, Table 2A and 2B).  Also, the slope and intercept of the regression lines for 1968 

and 1969 differed significantly (F = 9.7 p < 0.01, F = 1.6, p = 0.11, t = 3.2, p < 0.002) (Figure 2A, Table 

2A and 2B).  

For juvenile females, the slope of the regression line for age versus weight was significantly steeper in 

1966 than in all other years (1967; F=18.6, p<0.001, 1968; F=35.7, p<3.4E-7, 1969; F=8.7, p< 0.01), 

and the intercept of 1966 was lower than that of all other years (1967; t=18.6, p=0.05, 1968; t=5.1, 
p<7.0E-6, 1969; t=2.7, p< 0.01), however, the intercept of 1966 was only marginally significantly 

different from 1967 (Figure 2B, Table 3A and 3B). The intercept of 1967 was significantly lower than 

the intercept of 1968 (t=2.7, p<0.01) (Figure 2B, Table 3A and 3B). 

Table 3A. The slope and intercept of regression lines for age versus weight for juvenile Danish red fox 

females during the years 1966 to 1969, using GLM Generalized linear model. 

Year No. of 

litters 

Slope Intercept G P(slope=1) 

1966 13 0.025 0.29 168.66 1.5E-38 
1967 10 0.016 1.03 147.36 6.5E-34 

1968 27 0.013 1.72 202.77 5.2E-46 

1969 38 0.017 1.31 111.18 5.4E-26 

 

Table 3B. Significance table for females. Comparisons of slopes and intercepts of regression 

lines for age versus weight of juvenile female red foxes in the years 1966 to 1969. The upper 

cells show the tests for differences in slope, and the lower cells show the tests for differences 

in intercept.  

Year 

Slope/ 

Intercept 

1966 

N = 15 

1967 

N = 16 

1968 

N = 34 

1969 

N = 34 

1966  
F = 18.6 

p <0.001 

F = 35.7 

p< 3.4E-7 

F = 8.7 

p <0.01 

1967 
F = 1.5, p < 0.47 
t = 2.0, p = 0.05 

 
F = 1.8 
p = 0.18 

F = 0.2 
p = 0.61 

1968 
F = 1.9, p < 0.13 

t = 5.1, p< 7,0E-6 

F = 1.1, p = 0.80 

t = 2.7, p < 0.01 
 

F = 3.1 

p = 0.08 

1969 
F = 1.3, p < 0.58 

t = 2.7, p < 0.01 

F = 2.3, p = 0.09 

t = 0.8, p = 0.43 

F = 2.5, p < 0.01 

t = 1.6, p = 0.12 

 

 

 

 

 

 

    

 

Discussion

Birth date and individual litter size

For practical reasons 1stApril  was used as birth date for cubs in this data set. The birth dates of  most
thDanish red cubs are expected to be between 15 of March and the first week of April based on personal 

experience  in  the  field  and  the  birth  date  in  relation  to  latitude (Lloyd  &  Englund,  1973).  The  birth 
weight of wild red foxes has been found to range between 80 and 130 g and as interpreted from reports 
on  farmed  silver  foxes,  cubs  grow  from  a birth  weight  of around  100  g  to  1kg  in  around  four  weeks

(Tembrock, 1957; Lloyd, 1980; Hansen, 1991; Lassén et al., 2012). In this study the  mean  weight of 
young cubs between 23 days and 30 days i.e. within the nursing period was 1.3 ± 0.09S.E. kg (ranging 
from 800 g - 1.7 kg, n=13) (Figure 1). Moreover, the intercept of the regression lines for cubs less than

100  days  of  age  was  around  500  g  (intercept:  0.585  and  0.526  for  males  and  females  respectively),
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confirming that most Danish fox cubs are born just before 1st April. Therefore, 1st April is considered to 

be an appropriate proxy for as a birth date for the present data.  

 

  

   

    

     

 

 

 

   

Figure1. Polynominal regression lines of weight (y) versus date/age of male (blue dots) and female (red 
dots) foxes within their first year. Considering 1st April to be the birth date of cubs, juvenile foxes will

th th th thbe around 50 days 21 May, 100 days 10 June, 150 days 29 August, 200 days 18 October, 250 days
th th th7 December 300 days 26 January and around one year 17 March.

The onset of fecundity for foxes of both sexes is related to daylight, however, the time of birth of cubs 
show  some  variation,  especially  the  onset  of  oestrus  may  be  influenced  by  biotic  factors (Lloyd  & 
Englund,  1973). The  birth  date  may  be  affected  by  the  availability  of  food  within  areas  of  relatively 
close range (Kolb & Hewson, 1980b). In a study in North Dakota, almost all cubs caught at 207 dens

th thwere  born  between  15 March and  15 April (Sargeant et  al., 1981).  Also, Kolb  & Hewson  (1980a)

found the  date  of conception, hence, the birth  date  of  the cubs  within a relatively close range (20-35 
days). Although, these findings pertain to foxes in other parts of the world, they indicate that most fox 
cubs locally are born  within a relatively limited period,  most likely adapted to a period  with  optimal 
food resources to be utilised during the breeding season of the specific geographical area. The variance 
in the birth date of the wild foxes in this study may blur the dataset. However, since our model is based 
on 99 litters it is considered robust. Furthermore, the data noise due to different birth dates of litters will 
affect male and female age versus weight equally, and therefore not affect the development of SSD. As 
the 178 cubs originated from 99 litters, in average  1.8 cub (range 1-4) was caught from every litter, thus

the size of individual litters i.e. “within litter” is not expected to influence the results.

SSD in cubs under 100 days of age

We  show  that  SSD  in  Danish  fox  cubs  starts  to  develop  around  100  days  after  birth  (Figure  1).  Our 
findings are in agreement with Storm (1976), who found no significant difference in the mean weight 
between male and female cubs from April through June (when cubs were less than 90 days old) in North 
American red foxes, but that SSD became significantly different between sub adults in September. Also, 
an illustration by Soulsbury et al. (2008) shows that SSD increases in juvenile British red foxes during

the latter part of their first year
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Lloyd (1980) found an 11% weight difference between British fox embryos of different sexes, 

corresponding to SSD of 3.4% (based on cubic root of body mass) in this early stage of life. Storm et 

al. (1966) found male cubs to be slightly larger and heavier than female cubs and referred to data where 
male foetuses in 17 out of 23 litters were on average heavier than those of females, and longer in 16 out 

of 23 litters, however that these differences were not significant.  

Based on interpretation of data from Hansen (1991) and Lassén et al. (2012), the SSD of farmed silver 
foxes (V.v. fulva) show moderate sexual dimorphism from 2% to 4% in cubs within the first 100 days 

of life, increasing with age to around 5% to 6% around 220 days. Although farmed foxes have access 

to feed ad libitum and are 15% to 35% heavier than wild foxes, dimorphism increases with age. Nutrition 
may influence SSD, however, we assume that genetic components are predominantly responsible for 

the development of SSD.  

Adult red foxes feed cubs from approximately one to three months of age, after which the cubs begin 

independent foraging (Baker et al., 1998). A lack of SSD in wild cubs within 100 days of life may 
therefor prevent male cubs from outcompeting females, i.e. prevent a skewed sexual ratio in favour of 

males from an early stage of life due to competition between smaller females and larger males when 

parents deliver prey.  

Male biased SSD develops between independence of cubs and before mating  

The difference in growth rate between males and females is especially high during the period between 

100 days of age and sexual maturity. The slope of the regression line age versus weight is almost twice 
as high for males than for females (slope of males =0.0219 and slope of females =0.0132). The more 

pronounced SSD before sexual maturity is probably due to the reproductive benefits of males and not 

for females having a lager body mass (Iossa et al. 2008). In a study of foxes in Bristol (UK), the body 

mass of males was found to be positively related to territory size, boundary pressure exerted on 
neighboring territories, and the number of litters sired both within and outside their resident group (Iossa 

et al. 2008). In contrast, life-history traits of females were not significantly related to body mass, 

suggesting that other factors are likely to affect female reproductive success (Iossa et al., 2008). In 
Danish red foxes, female fat reserves, but not body size was found to correlate with the number of 

embryos  (Pagh et al., 2018).  

Bimaturism or selection for larger foxes? 

The growth of both juvenile males and females levels of in the period between mating and one year of 
age. SSD in this period is slightly lower (6.9%) compared to the previous period (7.4%). The relatively 

lower body mass of male foxes in the breeding period is most probably due to high energy investment 

in reproduction. Several authors have reported changes in the body mass of both males and females 
during the mating and breeding seasons, especially males lose weight, whereas females may weigh more 

during the last period of gestation, and lose weight after parturition and in the period when they have to 

nurse and provide food for the cubs (Fairley, 1970, Lloyd, 1980a; Kolb & Hewson, 1980b; Hewson, 

1984; Cavallini 1998).  

Although individual foxes most likely stop growing at maturity, a study of Danish foxes showed that 

older foxes are heavier (Pagh et al. 2017). This is most probably be due to selection for larger foxes, 

although it cannot be ruled out, that foxes may grow after one year, or that older foxes are more 

experienced hunters (Iossa et al., 2008; Pagh et al., 2017).  

It is unlikely that food-niche separation can explain sexual dimorphism in foxes; although adult males 

and juvenile foxes have been found to have a broader food-niche than adult females, their diets have a 
considerable overlap (Kidawa & Kowalczyk, 2011). It is more likely that selection forces favour larger 

male foxes, due to benefit from polygynous mating (Iossa et al., 2008).  

Yearly variation in cub size  
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In the present study, the growth rate of both male and female cubs showed significant variation from 

year to year, indicating that they become larger in certain years (Figure 2A, B, Table 2AB and 3A,B). 

Yearly variation in cohorts of foxes within the same area in relation to food supply has previously been 
found by e.g. Lindström (1983) and Sargeant (1978). Also, Soulsbury et al. (2008) argue that the yearly 

variation in body mass of adults is due to availability of nutrition between years. Soulsbury et al.(2008) 

found that rainfall (i.e. “worm nights”) in July was related to juvenile development, and subsequently 
to the body mass of adult foxes. In at previous study of foxes in Denmark, SSD was found to range 

between 3.6 and 7.6 in adult foxes in periods with high and low density of foxes, respectively (Pagh et 

al., 2017). In periods with low density and minor competition for food among foxes especially male 
cubs may gain a larger body mass, thus increasing SSD in these periods. While Soulsbury et al. (2008) 

found that the fully grown foxes were affected by yearly environmental variation and nutrition, Sargeant 

(1978) and (Lindström 1983) found that foxes in North America and Sweden, respectively, compensated 

for periods of reduced growth with subsequent periods of rapid growth.  

In the present study, the years 1966 and 1969 generally seem to be years of relatively higher growth rate 

and lower intercept for both males and females; in males, the slope of regression was higher in 1966 

than in 1968, and in females the slope of 1966 was higher compared to all other years. The intercept of 
the regression line in 1966 was lower than in 1967, and in 1968 in males and females the intercept of 

1966 was lower than it was in all other years (Figure 2A,B, Table 2A,B and 3A,B). Also, the slope and 

intercept of the regression lines for 1968 and 1969 differed significantly in males, the slope of 1969 

being higher and the intercept lower than in 1968 (Figure 2A,B, Table 2A,A and 3A,B). 

 

Figure 2A. Regression lines for age versus weight for males. Green line=year 1966, Blue line=1967, 

Red line=1968, Black line=1969. 
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Figure 2b. Regression lines for age versus weight for females. Green line=year 1966, Blue line=1967, 
Red line=1968, Black line=1969.

At first hand, it may seem strange that there is a reverse relation between the numeric values of slope 
and intercept (figure 2A,B). However, the birth weight of cubs is smaller in years with large litter sizes
(Lloyd 1980b). In years with low fox densities, hence more than average nutrition, litter size is found to 
be high (Voigt & Macdonald 1984; Heydon & Reynolds 2000; Goszczynski et al., 2008). Birth weight 
of cubs in years with plenty nutrition is expected to be smaller than average due to larger litter sizes. 
The  ability  to  accelerate  the  weight  gain  in  years  with  ample  nutrition  will  favour  the fecundity  of 
females with large litters, even though cubs from these litters are smaller than average at birth.

Also,  the  body  weights  and  SSD  of  adult  foxes  vary  within  years.  A  study  of  Danish  foxes 
documented that adult males were significantly heavier (average weight between 7.5-7.7 kg) in 
periods of low population density compared to periods with  high population density (6.8 kg)

and  that  SSD  ranged  between  3.6  to  7.6  in  adult  foxes  in  high  and  low -density  periods, 
respectively (Pagh et al. 2017). These differences in adult weights and SSD, may reflect yearly

difference in growth of cubs.

Acknowledgements

We dedicate this publication to Birger Jensen, who sadly passed away in December 2015. Birger was a 
great friend and naturalist, who provided invaluable knowledge about the biology of red foxes. Thanks 
also go to Christina Vedel-Smith, David Kjøller and Hans Viborg Kristensen (Natural History Museum 
of  Aarhus)  for  providing  access  to  museum  collections  no. 13000-13202,  to  Simon Bahrndorff for 
advice  on  figure  illustrations  and  to  Karin  Coles  for  proofreading.  We  are  grateful  for  the financial

thsupport from The 15 June Foundation and The Danish Nature Agency.

Ethics approval and consent to participate

All applicable international, national, and/or institutional guidelines for the care and use of animals were

followed. No ethical approval was required from an institutional or national ethics review board.

References

Baker PJ. Funk SM. Harris S 1998. Potential fitness benefits of group living  in the red fox,Vulpes

vulpes. Animal Behaviour, 56, 1411-1424.

41

 



   Pagh et al, (2018) Gen. Biodv. J. 2(1): 32-43 
 

 

 

 

 

 

  
 

     

 
 

 

  
 

  

 
   

 
 

 

 
 

 

 

 

 

   
 

    

 

     
 

   

 
     

  

         
  

   

 

  
 

  
       

 

 

 

  

 
     

Cassini MH2017. Role of fecundity selection on the evolution of sexual size dimorphism in mammals.

Animal Behaviour, 128, 1-4.

Cavallini P 1998. Differential Investment in Mating by Red Foxes. Journal of Mammalogy, 79, 215- 
221.

Cavallini P 1995. Variation in the body size of the red fox. Annales Zoologici Fennici, 32, 421-421- 
427.
Fairbairn  D  1997. Allometry  for  sexual  size  dimorphism:  Pattern  and  process  in  the  coevolution  of 
body size in males and females. Annual Review of Ecology and Systematics, 28, 659-659.

Fairbairn  DJ 2005. Allometry  for  Sexual  Size  Dimorphism:  Testing  Two  Hypotheses  for  Rensch's 
Rule in the Water Strider Aquarius remigis. The American Naturalist, 166, 69-84.

Fairley JS 1970. The Food, Reproduction, Form, Growth and Development of the Fox Vulpes vulpes

(L.) in North-East Ireland. Proceedings of the Royal Irish Academy.Section B: Biological, Geological, 
and Chemical Science, 69, 103-137.
Festa-Bianchet  M. King  WJ.  Jorgenson  JT.  Smith,  KG.  Wishart WD 1996. The  development  of 
sexual dimorphism: seasonal and lifetime mass changes in bighorn sheep. Canadian journal of zoology,

74, 330-342.
Festa-Bianchet  M.  Jorgenson  JT.  Réale  D  2000. Early  development,  adult  mass,  and  reproductive 
success in bighorn sheep. Behavioral Ecology, 11, 633-639.

Fokidis HB. Risch TS. Glenn TC 2007. Reproductive and resource benefits to large female body size 
in a mammal with female-biased sexual size dimorphism. Animal Behaviour, 73, 479-479-488.

Frank  LG.  1986. Social  organization  of  the  spotted  hyaena  Crocuta  crocuta.  II.  Dominance  and 
reproduction. Animal Behaviour, 34, 1510-1510-1527.

Goszczynski J. Misiorowska M. Juszko S. 2008. Changes in the density and spatial distribution of red 
fox dens and cub numbers in central Poland following rabies vaccination. Acta Theriologica, 53, 121- 
127.

Hammer  Ø. Haper,DAT.  Ryan  PD 2001. PAST:  Paleontological  statistics  software  package  for 
education and data analysis. Palaeontologia Electronica, 4, 1-9.

Hansen NE 1991. Energiforsyningen  hos  mink  og  ræv. Nordiske  Jordbrugsforskeres  Forening. 
Subsektionen för pälsdjur.

Harris S. Trewhella WJ 1988. An Analysis of Some of the Factors Affecting Dispersal in an Urban 
Fox (Vulpes vulpes) Population. Journal of Applied Ecology, 25, 409-422.

Hewson R 1984. Scavenging and predation upon sheep and lambs in west Scotland. Journal of Applied 
Ecology, 21, 843-868.
Heydon MJ. Reynolds JC 2000. Demography of rural foxes (Vulpes vulpes) in relation to cull intensity 
in three contrasting regions of Britain. Journal of zoology, 251, 265-276.

Iossa G. Soulsbury CD. Baker PJ. Harris S 2008. Body Mass, Territory Size, and Life-History Tactics 
in a Socially Monogamous Canid, the Red Fox Vulpes vulpes. Journal of Mammalogy, 89, 1481-1490.

Jensen B 1973. Movements of the Red Fox (Vulpes vulpes L.) in Denmark Investigated by Marking 
and Recovery. Danis Review of Game Biology, 8, 1-20.

Kauhala,  K 1998. Skull  and  tooth  morphology  of  Finnish  and  Japanese  raccoon  dogs. Annales 
Zoologici Fennici, 35, 1-1-16.

Kidawa, D., Kowalczyk, R., (2011): The effects of sex, age, season and habitat on diet of the red fox

Vulpes vulpes in northeastern Poland. Acta Theriologica, 56, 209-218.
Kilanowski AL. Kilanowski AL. Koprowski JL 2016. Female-biased  sexual  size  dimorphism:

ontogeny, seasonality, and fecundity of the cliff chipmunk (Tamias dorsalis). Journal of Mammalogy,

98, (1), 204–210.
Kimura,  K.,  Matsuyama,  S.,  (2012):  Sexual  Dimorphism  during  Early  Embryonic  Development  in 
Mammals. Journal of Mammalian Ova Research, 29, 103-112.

Kolb  HH. Hewson  R 1980a. The  diet  and  growth  of  fox-cubs  in  two  regions  of  Scotland. Acta 
Theriologica, 25, 325-331.
Kolb HH Hewson R 1980. A  study  of  fox  populations  in  Scotland  from  1971  to  1976. Journal  of

Applied Ecology, 17, 7-19.

42

 



   Pagh et al, (2018) Gen. Biodv. J. 2(1): 32-43 
 

 

43 

 

Korablev MP. Korablev MP. Korablev NP. Korablev PN 2013. Population aspects of sexual 

dimorphism in Mustelidae from the example of four species (Mustela lutreola, Neovison vison, Mustela 

putorius, and Martes martes). Biology Bulletin, 40, 61-69.  
Kovacs KM. Kovacs KM. Lavigne DM 1986. Maternal Investment and Neonatal Growth in Phocid 

Seals. Journal of Animal Ecology, 55, 1035-1051.  

Lassén TM. Tauson AH. Ahlstrøm, Ø 2012. Energy and main nutrients in feed for mink and foxes. 
63. 98pp. 

Lindström E 1983. Condition and growth of red foxes (Vulpes vulpes)in relation to food supply. 

Journal of Zoology, 199, 117-122.  
Lloyd HG. Englund J 1973. The reproductive cycle of the red fox in Europe. Journal of Reproduction 

and Fertility, Supplement, 19, 119-130.  

Lloyd HG, (1980): The red fox Batsford, London.  

Macdonald DW. Courteney O 1996. Enduring social relationships in a population of crab-eating 
zorros, Cerdocyon thous, in Amazonian Brazil (Carnivora, Canidae), Journal of zoology, 239, 329-355.  

McDonald, RA., 2002: Resource partitioning among British and Irish mustelids. Journal of Animal 

Ecology 71, 185-200. 
Moors, PJ. (1980): Sexual dimorphism in the body size of mustelids (Carnivora): the roles of food 

habits and breeding systems [weasels, Mustela nivalis, energy requirement of male and female]. Oikos, 

34, 147-158.  
O'Mara, MT. (2012): Growth and the development of sexual size dimorphism in Lorises and Galagos. 

American Journal of Physical Anthropology, 147, 11-20.  

Pagh, S., Chriél, M., Madsen, AB., Jensen, TLW., Elmeros, M., Asferg, T., Hansen, MS., (2018): 

Increased reproductive output of Danish red fox females following an outbreak of canine distemper. 
Canid Biology & Conservation, 21, 12-20.  

Pagh, S., Hansen, MS., Jensen, B., Pertoldi, C., Chriél, M. (2017): Variability in body mass and 

sexual dimorphism in Danish red foxes (Vulpes vulpes) in relation to population density. Zoology and 
Ecology, 28, 1-9.  

Sargeant, AB., (1978): Red Fox Prey Demands and Implications to Prairie Duck Production. Journal 

of Wildlife Management, 42, 520-527.  

Sargeant AB. SH. Johnson DH 1981. Determination of Age and Whelping Dates of Live Red Fox 
Pups. Journal of Wildlife Management, 45, 760-765 

Soulsbury CD. Iossa G. Baker PJ. Harris S. 2008. Environmental variation at the onset of independent 

foraging affects full-grown body mass in the red fox. Proceedings of the Royal Society B Biological 
Sciences, 275, 2411-8.  

Storm GL 1976. Morphology, Reproduction, Dispersal, and Mortality of Midwestern Red Fox 

Populations. Wildlife Monographs, 49, 3-82.  
Storm GL. Ables ED 1966. Notes on Newborn and Full-Term Wild Red Foxes. Journal of 

Mammalogy, 47, 116-118.  

Swanson EM. McElhinny TL. Dworkin I. Weldele ML. Glickman SE. Holekamp KE. 2013. 

Ontogeny of sexual size dimorphism in the spotted hyena (Crocuta crocuta). Journal of Mammalogy, 
94, 1298-1310.  

Tembrock G 1957. Zur Ethologie des Rotfuchses (Vulpes vulpes L.) unter besonderer Berücksichtigung 

der Fortpflanzung. Zoologishen Garten N. F., 23, 289-532.  
Thom MD. Harrington LA. Macdonald DW 2004. Why are American mink sexually dimorphic? A 

role for niche separation. Oikos, 105, 525-535.  

Vogtsberger LM. Vogtsberger LM. Barret GW 1973. Bioenergetics of Captive Red Foxes. Journal 
of Wildlife Management, 37, 495-500.  

Voigt DR. Macdonald DW 1984. Variation in the spatial and social behaviour of the red fox, Vulpes 

vulpes. Acta Zoologica Fennica, 171, 261-265.  

 




