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Abstract 
POU1F1 gene controls cell differentiation and animal growth by binding to target DNA promoter sequence, thereby 
auto-regulating its own expression and expression of growth hormone (GH), prolactin (PRL) and thyroid-stimulating 
hormone beta sub-unit (TSHβ) genes. Therefore, the exploration of caprine POU1F1 gene polymorphisms may be vital 
in the formulation of conservation and breed improvement strategies.  In this study, POU1F1 gene was characterized 
for sequence polymorphisms in 366 individuals from two Nigerian goat breeds ((West African Dwarf (WAD) and Red 
Sokoto (RS)) and one South African goat breed (Kalahari (KR)). The effects of polymorphisms on litter size were 
investigated using linear mixed model. Two intronic mutations (g.306G>A and g.11236C>T) were identified. However, 
no significant association was found between the Single Nucleotide Polymorphisms (SNPs) and litter size in the three 
populations. The genetic distance based on POU1F1 investigated region revealed that the two Nigerian breeds and the 
South African breed were identical (pairwise genetic distance of 0.00). Phylogenetic tree constructed from the pairwise 
distance clustered the three breeds into a single clade with the two Nigerian goat breeds having a more recent common 
ancestor. Structural analysis of the POU1F1 protein confirmed that Pit-Oct-Unc transcription factors domain (POU) and 
Homeodomain (HOX) domains are conserved in mammals, with several overlapping sub-domains across the same 
region in all the three populations. We found a subdomain Subfamily of SANT domain or myb/SANT-like domain in 
Adf-1 (MADF) in goat, cattle, buffalo and camel that has not been reported in mammals. 
Keywords: POU1F1 gene; mutation; West African Dwarf; Red Sokoto; Kalahari Re

 

Introduction  

Among domesticated ruminants reared in the tropical and subtropical regions, goat (Capra hircus) is 

regarded as the most prolific (Yadav and Yadav, 2008). Their ability to survive under low input production 

system as well as adapt to harsh environmental condition makes them a favorite choice for farmers in the 

tropics (Fajemilehin and Salako, 2008; Serrano et al., 2009). In Nigeria, the two most important goat breeds 

are West African Dwarf (WAD) and Red Sokoto (RS) (Adah et al., 1993; Yakubu et al., 2010a). These 

Genetic polymorphism in the POU1F1 gene in Kalahari Red and two 

Nigerian goat breeds and their relationship with litter size 
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breeds are widely spread in the country with both having unique features and adaptability to different 

climatic conditions of the country (Adah et al., 1993; Yakubu et al., 2010b; Obua et al., 2012). The WAD 

goats are trypanotolerant and more adapted to the humid climatic condition of Southern Nigeria whereas, the 

RS goats are widely popular for their high-quality skin and ability to adapt well to the tropical hot-dry 

climatic conditions of northern Nigeria (Hoste et al., 1992; Akpa et al., 1998). The Kalahari Red (KR) goat, 

on the other hand, is a meat-producing goat which originates from South Africa (Kotze et al., 2004). It was 

introduced to Nigeria in 2011 for breeding purposes (Bemji et al., 2014). The KR goat is also renowned for 

its ability to adapt to a wider range of climatic conditions (Kotze et al., 2004). 

Litter size, i.e., the number of young born alive per kidding, is an important factor driving the profitability in 

the goat industry (Lai et al., 2016). In Nigeria, the WAD and RS goats are the most prolific breeds with 

average litter size of 1.60 and 1.45, respectively (Abubakar et al., 2013; Oga, 2016). Information based on 

limited data showed that mean litter size of KR goats bred in Nigeria was 1.67 for dams fed with grass 

supplemented with low protein diets (Oderinwale et al., 2017). Over the past decades, the application of 

traditional selective breeding to improve litter size resulted in limited success (An et al., 2010) due to its low 

heritability (Otuma and Onu, 2013). Thus, the application of candidate gene approach could lead to 

accelerated improvement for this trait in selecting breeding stocks with high reproductive potential (Li et al., 

2011).  

In breeding indigenous goats, the critical research problem that necessitates urgent attention is the 

conservation and use of these breeds of animals (Wang et al., 2011).  Genetic characterization allows the 

assessment of genetic variability and understanding animal evolutionary history (Muritala et al., 2015), 

which is crucial for breed conservation priorities and sustainable management programs (Aggarwal et al., 

2007; Glowatzki-Mullis et al., 2008; Kevorkian et al., 2010). Several studies have characterized Nigerian 

breeds and Kalahari Red goat using microsatellite markers (Okpeku et al., 2011; Agaviezor et al., 2012; Ojo 

et al., 2015, Murital et al., 2015; Ojo et al., 2018). Information is currently limited on characterization of 

Nigerian goat breeds based on candidate genes that affect economic traits. 

The POU1F1 gene is a member of the pituitary-specific POU-containing transcription factor family, which 

contains POU DNA-binding domain (Ozmen et al., 2014). It consists of the N-terminal transactivating 

domain (TAD) and Pou-Homeo domain which are involved in protein–protein interactions, DNA binding 

and interactions with transcription co-factors (Andersen and Rosenfeld, 2001). The POU1F1 gene controls 

cell differentiation and animal growth and development by binding to target DNA promoter sequence, 

thereby auto-regulating its own expression (Andersen and Rosenfeld, 2001; Ho et al., 2015). It also regulates 

the expression of three other genes that code for hormones, namely; growth hormone (GH), prolactin (PRL) 

and thyroid stimulating hormone beta sub-unit (TSHβ) genes (Sobrier et al., 2016). These three genes 

function within the hypothalamo-pituitary gonadal axis that regulates ovulation and litter size in small 

ruminants (Zhang et al., 2011; An et al., 2015; Huang et al., 2015). The POU1F1 gene contains 6 exons and 

5 introns and encodes a protein with 291 amino acids. Mutations in the gene have been associated with 

economically important traits in livestock (Carsai et al., 2012; Feng et al., 2012; Daga et al., 2013; Korkmaz-

Ağaoğlu et al., 2019; Putra et al., 2019). However, no study has examined polymorphisms of this gene and 

their relationship with litter size in African goat breeds. This study was therefore conducted to characterize 

its genetic polymorphisms in two Nigerian goat breeds and Kalahari Red goat and also investigate its 

association with litter size. 

Materials and Methods  

Experimental animals, management and location 

In this study, 226 WAD, 70 RS and 70 KR goats were used. Animals were managed semi-intensively at 

Ipokia Local Government area of Ogun State by local farmers (WAD), National Animal Production 
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Research Institute (NAPRI), Shika-Zaria (RS) and Institute of Food Security, Environmental Resources and 

Agricultural Research of the Federal University of Agriculture, Abeokuta (FUNAAB), Nigeria (KR). Only 

animals that kidded within the same season were used with parity of does ranging from 1-5. The average 

litter size and parities of the three populations are presented in Table 1. The locations of the sampled herds 

are indicated in Figure. 1.  

 

Figure. 1. Map of the Federal Republic of Nigeria showing the locations of the study area 

Table 1. Parity and the average litter size of the three populations  
Breed N Parity Litter size 

WAD 70 1 1.25±0.06 

 56 2 1.62±0.09 

 78 3 1.94±0.07 

 16 4 2.15±0.10 

 6 5 2.0±0.23 

RS 70 3 1.59±0.14 

KR 52 1 1.35±0.11 

 18 2 1.29±0.18 

 N= No of animal; WAD= West African Dwarf; RS= Red Sokoto; KR= Kalahari 

Blood sample collection and DNA isolation 

The ethical guidelines and approval of the College of Animal Science and Livestock Production of the 

Federal University of Agriculture, Abeokuta, Nigeria were followed in the research.  Blood samples (about 5 

mL/animal) were collected aseptically from the jugular vein of does into BD vacutainer tubes (Becton, 

Dickinson and Company, USA) containing EDTA anticoagulant. The samples were snap frozen and 

transported to the laboratory and kept in a freezer at -20°C until DNA purification. Genomic DNA was 

extracted from whole blood using NucleoSpin® Genomic DNA extraction kit (MACHEREY-NAGEL 

GmBh & Co. KG, Germany) based on manufacturer’s procedure. The NanoDrop ND-1000 

spectrophotometer (Nano Drop Technolgies, Wilmington, DE, USA) was used to assess the quantity and 

quality of extracted DNA.  

Primer design, PCR amplification and sequencing 

Caprine POU1F1 gene sequence (NC_030808.1, position 34235896 to 34251973) was used to design six 
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pairs of primers (Table 2) with Primer3 software (Untergrasser et al., 2012) to amplify the promoter region 

and exons, including ~250 bps of surrounding introns. PCR reactions were performed in a 25 µL volume 

containing 1 µM each primer (forward and reverse), 10X PCR buffer (including 1.5 mM MgCl2), 200 µM 

dNTPs and 1 unit of Taq DNA polymerase (New England Biolabs Ltd, Whitby, ON, Canada). About 60 ng 

of genomic DNA was used as template. Thermocycling conditions consisted of 35 cycles of initial 

denaturation at 95 °C for 5 min, denaturation at 94 °C for 30 s; primer annealing at 58 to 62°C for 1 min; 

primer extension at 72°C for 1 min with final extension at 72°C for 10 min. PCR products were separated in 

1.5% agarose gel in 1 x TBE electrophoresis buffer. The gels were stained with Safe View (Applied 

Biological Materials Inc, Richmond, BC, Canada) and viewed under UV light using Alphamager® 2200 

version 5.5 gel documentation systems (Alpha Innotech, San Leandro, CA, USA). Sequencing of pooled 

PCR products (10 samples per pool) for polymorphism detection was carried out with the Big Dye® 

Terminator chemistry on ABI3730XI (Applied Biosystems, Foster City, CA, USA) DNA analyzer by 

Genome Quebec and McGill University Innovation Center, Quebec, Canada 

(https://genomequebec.mcgill.ca/). 

Table 2. Primer sequences used in the amplification of the coding regions and surrounding intronic 

sequences of the POU1F1 gene 

Primer Primer length  Primer sequence (5’ → 3) Region  Length 

(bp) 

TA 

(°C) 

POU1F1_80F 20 TTGCCTTCATTCCCTACCCA Promoter region and exon 1 837 58.62    

POU1F1_4073F 22 ACGAATGTGTCTTGAATCCTCAT Exon 2 + introns 493 58.93 

POU1F1_11091F 20 GCTTCAGAAAACCGAATGTC Exon 3 + introns  943 59.50 

POU1F1_13635F 23 TGAATGGCAGATGTTCCTATCTG Exon 4 + introns 682 58.29    

POU1F1_15754F 20 GGAAACGGAGAACAACTATC Exon 5 + introns 802 57.52    

POU1F1_15754F 20 GCTTGGAAGGTGTTTGCAGA Exon 6 + introns 788 59.89    

 

SNP identification and genotyping 

Single nucleotide polymorphisms were identified in POU1F1 gene from chromatographs of pooled samples 

with the aid of Codon Code aligner (Codon code Corporation Dedham, MA, USA) and verification was done 

using Chromas version 2.31 software (Technelsium Pty Ltd., Tewantin, Queensland, Australia).  SNP 

genotyping of individual samples at the identified SNP loci was accomplished by the method of 

SequenumiPLEX Gold Technology on a MassARRAY platform (Sequenom Inc. San Diego, CA, USA) by 

McGill University and Genome Quebec Innovation Center (https://genomequebec.mcgill.ca/). A total of 366 

does were genotyped at the two identified SNP loci. Diversity indices including allelic and genotypic 

frequencies, heterozygosity (He), polymorphism information content (PIC) and Hardy-Weinberg equilibrium 

were estimated using Genetics package (https://cran.r-project.org/web/packages/ genetics/index.html) in R 

environment. The effect of SNP genotype on litter size was evaluated for separate populations using the 

following mixed model: 

y = Xb + Za +e
 

Where; y is the vector for observation on litter size, b is the vector of fixed effects of genotype (1, 2, 3) and 

parity (1, 2, 3, 4, 5), a is the vector of random effect of doe, e is the random error. X and Z are incidence 

matrices relating records to their respective effects. Analysis of variance was done using SAS version 9 

(SAS Institute, Cary, NC, USA). 

Sequence analysis 

Nucleotide sequences of different PCR fragments of the investigated region of the POU1F1 gene were 

assembled into contigs in WAD, RS and KR breeds. The nucleotide sequences were then aligned with that of 

https://genomequebec.mcgill.ca/
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other mammalian species available in GenBank using the ClustalW program (Thompson et al., 1994), 

implemented in MEGA-X. Pairwise genetic distances among the three goat breeds and other mammalian 

species were estimated using the various aligned sequences. Phylogenetic tree was constructed using the 

Neighbor-joining method (Saitou and Nei, 1987) to classify the populations into different clades. The 

reliability of the phylogenetic tree was assessed using bootstrap values computed after 10,000 replications of 

re-sampling loci. 

Domain Structure Analysis 

To delineate the functional domains of the complete open reading frame (ORF) of goat (representing WAD, 

RS and KR) and other mammalian species (ORF retrieved from GenBank), POU1F1 gene ORFs from goat 

and other mammals were submitted into Simple Modular Architecture Research Tool software (SMART; 

http://smartemblheidelberg.de). 

Results 

Polymorphisms in the POU1F1 gene and genetic diversity of the populations 

Two transition mutations (g.306G>A and g.11236C>T) were identified within POU1F1 gene in the goat 

populations (Figure. 2). The SNPs were detected in introns 1 (g.306G>A) and 3 (g.11236C>T) (Table 3). 

KR goats were non-polymorphic at g.306G>A loci. The polymorphic sites were numbered according to 

caprine POU1F1 sequence (GeneBank: NC_030808.1) relative to the transcription start site. 

Individuals with homozygous AA genotype at g.306G>A were predominant in WAD and RS goats at 

frequencies of 0.70 and 0.58, respectively. At g.11236C>T locus, CC genotype was the most abundant with 

a frequency of 0.67 in both WAD and KR goats. Conversely, heterozygote (CT) was the predominant 

genotype (0.41) in RS goats (Table 4). 

High heterozygosity estimates were observed in RS (0.40 and 0.50 at g.306G>A and g.11236C>T, 

respectively). WAD and KR breeds recorded lower heterozygosity estimates (≤0.30) at the two SNP loci. 

The three breeds had moderate genetic diversity (0.25 ≤ PIC ≤ 0.50) at the polymorphic sites and were all in 

HWE (P > 0.05). 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

Figure 2. Sequence chromatogram showing the polymorphic sites in the POU1F1 gene. (a) g.306G>A and 

(b) g.11236C>T. 
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Table 3. Single nucleotide polymorphisms identified in the POU1F1 gene. 

Site Chromosome Mutation Genomic region 

Intron 1 6 G > A g.306G>A 

Intron 3 6 C > T g.11236C>T 

 

Table 4. Genetic Diversity indices based on the identified mutations in the POU1F1 gene of West African 

Dwarf, Red Sokoto and Kalahari Red goats. 
SNP Breed Genotypic frequency Allelic    frequency He PIC HWE 

exact test 

(p-value) 

g.306G>A  

WAD 
RS 

  GG         GA          AA 

  0.01       0.29         0.70 
  0.12       0.31         0.58 

    A             G 

  0.84           0.16 
  0.73         0.27 

 

0.29 
0.40 

 

0.25 
0.31  

 

0.61 
0.32 

g.11236C>T  

WAD 
RS 

KR 

   CC         CT           TT 

   0.67       0.28         0.04 
   0.33       0.41         0.26 

   0.67       0.23         0.00 

C              T 

  0.81         0.19 
  0.54         0.46 

  0.83         0.17 

 

0.30 
0.50 

0.29 

 

0.25 
0.37 

0.24 

 

0.46 
0.44 

1.00 

He = Heterozygosity; PIC = Polymorphic information content; HWE = Hardy-Weinberg equilibrium 

Association analysis 

The effect of SNP genotype at two SNPs loci on litter size is given in Table 4. No significant association 

between the intronic SNPs and litter size was found in the studied populations (Table 5). 

Table 5. Least square mean for litter size for genotypes at SNP loci in the POU1F1 gene of West African 

Dwarf, Red Sokoto and Kalahari Red goats 

SNP Breed Genotype Litter size ± SE P-adjusted 

g.306G>A WAD 

 

 

RS 

 

 

GG 

GA 

AA 

GG 

GA 

AA 

1.75±0.48 

1.68±0.09 

1.67±0.05 

1.33±0.48 

2.00±0.09 

1.47±0.05 

0.86 

 

 

0.61 

g.11236C>T WAD 

 

 

RS 

 

KR 

CC 

CT 

TT 

CC 

CT 

TT 

CC 

CT 

1.66±0.05 

1.65±0.09 

1.47±0.25 

1.33±0.24 

1.82±0.26 

1.57±0.32 

1.50±0.20 

1.00±0.36 

0.87 

 

0.47 

0.38 

Genetic distance among mammalian species  

Pair-wise genetic distances based on investigated region of the POU1F1 gene among the three populations 

are presented in Table 6. Results revealed the closest genetic distance of 0.00 among the three goat 

populations and the farthest genetic distance of 0.280 between Horse and the goat populations studied. The 

standard error of the estimate for all the genetic distances ranged from 0.000 to 0.015. 
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Table 6. Genetic distances among WAD, RS and KR goats and other mammalian species 

 1 2 3 4 5 6 7 8 9 10 11 

1  0.000 0.000 0.015 0.014 0.014 0.014 0.015 0.015 0.015 0.015 

2 0.000  0.000 0.015 0.014 0.014 0.015 0.015 0.015 0.015 0.015 

3 0.000 0.000  0.015 0.014 0.014 0.014 0.015 0.015 0.015 0.015 

4 0.224 0.224 0.224  0.004 0.004 0.008 0.009 0.009 0.010 0.009 

5 0.226 0.227 0.226 0.016  0.002 0.008 0.008 0.009 0.010 0.009 

6 0.211 0.212 0.211 0.015 0.002  0.008 0.008 0.009 0.010 0.009 

7 0.259 0.260 0.259 0.065 0.058 0.057  0.008 0.009 0.009 0.009 

8 0.272 0.272 0.272 0.072 0.065 0.064 0.062  0.008 0.009 0.008 

9 0.269 0.269 0.269 0.081 0.080 0.077 0.073 0.072  0.002 0.009 

10 0.272 0.272 0.272 0.086 0.084 0.082 0.078 0.076 0.05  0.009 

11 0.280 0.280 0.280 0.094 0.086 0.085 0.087 0.073 0.076 0.081  

1-WAD, 2-RS, 3-KR, 4- Sheep, 5-Cattle, 6-Buffalo, 7-Pig, 8-Camel, 9-Chimpanzee, 10-Human, 11-Horse 

Standard genetic distances (below diagonal) and standard errors (above diagonal) 

Domain structure analysis of POU1F1 gene 

Structural analysis of predicted POU1F1 protein based on the ORF revealed similarity in domain structure 

among the three goat breeds, distinct from other mammalian species (Supplementary Figure 1). Some 

domains were not displayed in the supplementary figure 1 because the priority for display by the tool was 

SMART > PFAM > PROSPERO repeats > Signal peptide > Transmembrane > Coiled-coil > Unstructured 

regions > Low complexity. The domains not displayed because they overlapped with more prioritized 

domains include subfamily of SANT domain (myb/SANT-like domain in Adf-1) (MADF), membrane-attack 

complex/perforin (MACPF), helix_turn_helix multiple antibiotic resistance protein (HTH_MARR), domain 

in helicases and associated with SANT domains (HAS), helix loop helix domain (HLH), Fish-specific 

NACHT associated domain (FISNA), laminin N-terminal domain (domain VI) (LamNT), c-SKI Smad4 

binding domain (c-SKI_SMAD_bind) (Supplementary Table  1). The goat populations had POU and HOX 

domains with the MADF sub-domain within the POU domain. All other mammalian species included in the 

analysis had additional sub-domains within the HOX domain that are different from the goat populations 

(Supplementary Table 1). 

Phylogenetic analysis 

The Neighbor-joining phylogenetic tree (Figure 3) revealed that all the three breeds belong to the same clade 

with the Nigerian goats (WAD and RS) having the most recent common ancestor. All the other mammalian 

species formed different clades as expected. 

Discussion 

The present work is the first attempt to characterize genetic polymorphisms in the POU1F1 gene in two 

Nigerian and Kalahari Red goat breeds. Results revealed two intronic mutations in POU1F1 gene of the two 

Nigerian goats and South African breed. These mutations were reported in Jining Grey goats (Feng et al., 

2012).  Daga et al. (2013) reported seven intronic SNPs in POU1F1 gene in Sarda goats. Similar to our 

results, no significant association was found between the intronic SNPs and litter size in the study of Feng et 

al. (2012). However, Getmantseva et al. (2017) reported significant association between an intronic SNP 

with reproductive traits in pigs. Hong and Park (2012) noted that larger sample size is required for 

population-based studies to increase statistical power in detecting significant variants. The inability to detect 

significant association between SNPs and litter size in our study could have been due to lower statistical 

power limited by sample size, especially for RS and KR populations. The importance of intronic mutations 

have been widely reviewed in the literature. Introns play key roles in transcription initiation and termination 

(Antoniou et al., 1998; Petit et al., 2008; Chorev and Carmel, 2012), regulation of alternative splicing (Sorek 

and Ast,  2003; Pan et al., 2008; Roy et al., 2015), genome organization (Liu et al., 1995; Vinogradov, 
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2006), regulation of nonsense-mediated decay (Maquat, 2004; Chang et al., 2007; Silva and Romao, 2009) 

and most importantly, positive regulation of gene expression (Clark et al., 1993; Juneau et al., 2006; 

Shabalina et al., 2010).  

 

Figure. 3. Phylogenetic relationships among WAD, RS, KR and other mammalian species using bootstrap value computed after 

10,000 replications 

 

The estimate of genetic distance is a measure of genetic diversity between species or between populations 

within a species (Nei‚ 1987). Genetic distance and distribution of alleles between populations characterizes 

the evolutionary relatedness of populations to explicitly measure their genotype differentiation (Vieira et al., 

2016). These distances, when used to construct phylogenetic trees, depict the genotypic relatedness between 

populations (Pritchard et al., 2000). The genetic distance observed between WAD and RS indicates that 

POU1F1 is highly conserved in the two Nigerian goat breeds. Higher genetic distance ranging from 0.11 to 

0.39 was reported between WAD and RS using microsatellite markers (Adebambo, 2003; Okpeku et al., 

2011, Muriatal et al., 2015; Ojo et al., 2018). This is expected because microsatellite markers are highly 

polymorphic than SNP mutation (Weber and Wong, 1993; Xu et al., 2000). Moreover, two loci were used to 

infer the genetic distance, coupled with the small sample size used in our study. The genetic similarity 

observed between the two goat populations in this study could be attributed to gene flow perhaps due to 

indiscriminate breeding between the populations, similar to what was reported between cattle populations 

reared under the nomadic husbandry system (Ibeagha-Awemu and Erhardt, 2005; Ibeagha-Awemu and 

Erhardt, 2006). The phylogenetic tree based on POU1F1 investigated regioin revealed a distinct clade for the 

two Nigerian breeds which might be due to common alleles shared between the two goat populations, 

another indication of interbreeding between the two breeds. This is expected due to free movement of the 

breeds in Nigeria as northern herdsmen, especially in the rainy season, usually migrate southwards with RS 

goats in search of pasture and premium price from selling the animals and their products (Ojo et al., 2015). 

This may have facilitated gene flow between the two distinct breeds. Although the two Nigerian goat breeds 
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and the South African goat clustered on the same clade, there is indication that WAD and RS are most 

closely related since both shared the most recent common ancestor compared with Kalahari Red. This is 

further supported by the study of Murital et al. (2015). The separation of the Kalahari Red from the two 

Nigerian breeds could also be attributed to differences in geographical locations of origin (Awotunde et al., 

2015). 

The domain structural analysis of POU1F1 ORFs in the studied goat breeds and other species revealed two 

conserved domains (POU and HOX) in mammals.  POU domain is a sequence-specific DNA binding 

transcription factor and it is highly conserved in all mammalian species (Wallis‚ 2018), while the HOX 

domain is a DNA-binding factor that controls differential genetic programs along the anterior-posterior axis 

of animal bodies (Alonso‚ 2002). The POU domain transcription factors have many functions including 

regulation of neural development in both vertebrate and invertebrate sensory systems (Assa-Munt et al., 

1993; Erkman et al., 1996; McEvilly et al., 2002; Komiyama et al., 2003; Corty et al., 2016) and organismal 

development (Andersen and Rosenfeld, 2001). In mammals, including goats, the POU domain is expressed 

in the germ-line cells and early embryogenesis, indicating its role in early development (Rosenfeld 1991). 

The POU domain is also widely expressed in mammalian fore and mid-brain suggesting its role in the 

development of brain structure (Rosenfeld 1991) and is one of the controlling components of the cell-cell 

signaling process underlying the hypothalamic regulation of female puberty (Ojeda et al., 1999) perhaps via 

interaction with estrogen receptor (Bourguignon et al., 1997). HOX domain, on the other hand, is responsible 

for shaping animal structures by inducing different developmental programs along the anteroposterior body 

axis (Alonso‚ 2002). This is achieved by the activation of cell death, promoting gene reaper to maintain the 

boundaries between the maxillary and mandibular head lobes (Lohmann et al., 2002). 

Despite POU and HOX domains being conserved within the mammals, some sub-domains are overlapping 

them. Our analysis suggests that subfamily of SANT domain (MADF) is present in caprine, ovine and 

bovine species. The role of this domain has been reported in the literature, including transcriptional 

regulation of essential target genes that play key roles in germ cell development (Zimmermann et al., 2006; 

Rao et al., 2016). The MADF domain has been identified in numerous organisms, including worms (Rao et 

al., 2016), insects (Vidal et al., 2016), mites (Ljunggren et al., 2006), flies and fish (Zimmermann et al., 

2006; Shukla et al., 2014). To the best of our knowledge, this domain has not been identified in mammalian 

genomes, which may be due to lack of complete experimental characterization of ORF predictions of major 

genome sequencing projects in mammals (Ljunggren et al., 2006). Well-characterized protein-coding loci 

could produce transcripts with the potential for encoding novel protein species (Denoeud et al., 2007; 

Rozowsky et al., 2007).  

Conclusion  

This is the first report of sequence characterization of the POU1F1 gene in African goat breeds. Two intronic 

SNPs were identified in the Nigerian breeds, but only one SNP was identified in KR goats. We were unable 

to detect association between the SNPs and litter size in the three populations. Larger sample size with its 

consequent improvement of statistical power should be used in future studies. Close genetic relationship 

observed based on the POU1F1 region investigated between the two Nigerian breeds and a distinct 

separation from the South African (KR) breed are attributed to relatively wide divide in geographical area of 

origin. This study thus confirms the conserved POU and HOX domain structures of POU1F1 in mammalian 

species with an underlying sub-domain overlapping the same region of the domain features. Further research 

should, however, completely characterize the ORF predictions of the whole genome further to unravel 

hidden domain structures of economic importance in goats. 
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Supplementary materials 

 

Supplementary Figure. 1. Comparison of the domain structures of POU1F1 gene obtained from the amino acid sequence of different 

species based on SMART analysis. 

 

Supplementary Table 1. Structural domains of WAD, RS, KR and other mammalian species 

Animal Name of domain Definition Start  End  E-value 

WAD POU Pit-Oct-Unc transcription factors 150 224 4.04e-51 

 HOX  Homeodomain 240 302 1.17e-18 

 MADF Subfamily of SANT domain (myb/SANT-like 

domain in Adf-1) 

160 231 1430 

Sheep POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain  214 276 1.02e-18 

Cattle POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX Homeodomain 214 276 1.17e-18 

 MACPF Membrane-attack complex / perforin 109 281 668 

 MADF Subfamily of SANT domain (myb/SANT-like 

domain in Adf-1) 

134 205 1430 
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 HTH_MARR  Helix_turn_helix multiple antibiotic resistance 

protein 

139 256 895  

 HAS domain in helicases and associated with SANT 

domains 

207 274 2880  

 HLH helix loop helix domain 211 257 189 

 FISNA Fish-specific NACHT associated domain 224 282 108000 

Buffalo POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain 214 276 1.17e-18 

 MACPF Membrane-attack complex / perforin 109 281 668 

 MADF Subfamily of SANT domain (myb/SANT-like 

domain in Adf-1) 

134 205 1430 

 HTH_MARR  Helix_turn_helix multiple antibiotic resistance 

protein 

139 256 895  

 HAS Domain in helicases and associated with SANT 

domains 

207 274 2880  

 HLH Helix loop helix domain 211 257 189 

 FISNA Fish-specific NACHT associated domain 224 282 108000 

Pig  POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain 214 276 1.17e-18 

Camel  POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain 214 276 1.17e-18 

 LamNT  Laminin N-terminal domain (domain VI) 28 143 1300  

 c-SKI_SMAD_bind c-SKI Smad4 binding domain 71 144 88000 

 MACPF Membrane-attack complex / perforin 109 281 668 

 MADF Subfamily of SANT domain (myb/SANT-like 

domain in Adf-1) 

134 205 1430 

 HTH_MARR helix_turn_helix multiple antibiotic resistance 

protein 

139 256 895 

 HAS Domain in helicases and associated with SANT 207 274 2880 
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domains 

 HLH Helix loop helix domain 211 257 189 

 FISNA Fish-specific NACHT associated domain 224 282 108000 

Horse POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain 214 276 1.02e-18 

Chimpanzee POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain 214 276 1.02e-18 

Human POU Pit-Oct-Unc transcription factors 124 198 4.04e-51 

 HOX  Homeodomain 214 276 1.02e-18 

 

 


