

Journal homepage: https://journals.univ-tlemcen.dz/GABJ/index.php/GABJ

ISSN: 2588-185X

Original Research Paper

Genetic Diversity of Mitochondrial DNA (mtDNA) *D-Loop* Sequences in Six Improved Tropically Adapted Chicken Breeds (iTABs) in Imo State, Nigeria

OKANI-ONYEJIAKA Mirian C^{1*}, OGUNDU Uduak E¹, BOUDALI Selma F², BAMIDELE Oladeji³, OGBUEWU Ifeanyi P¹, ALADI Nnanyere O¹

¹Department of Animal Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria;

²Département de Génétique Moléculaire Appliquée, Laboratoire de Génétique Moléculaire et Cellulaire (LGMC), Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf USTO-MB, BP 1505, El M'naouer, Oran, Algérie ; ³African Chicken Comptio Crime, Internetional Livertoch Bengruch Institute, Addia Ababa

³African Chicken Genetic Gains, International Livestock Research Institute, Addis Ababa, Ethiopia.

Corresponding Author: Okani-Onyejiaka MC, Federal University of Technology, Owerri, Imo State, Nigeria; **Email**: mirianonyejiaka@gmail.com

Article history: Received: April 07th 2022; Revised: June 02nd 2022; Accepted June 06th 2022

Abstract

The improved tropically adapted chicken breeds (iTABs) are low-input-high-output chickens suitable for smallholder poultry (SHP). Six iTABs (Fulani, FUNAAB Alpha, Kuroiler, Noiler, Sasso and Shika Brown) were introduced, and were raised under semi-intensive management system and tested under the African Chicken Genetic Gains project in Nigeria. The objective of this study was to evaluate the genetic diversity of these iTABs tested in Imo State Nigeria using mitochondrial DNA (mtDNA), Blood samples were collected from 77 chickens belonging to these six populations of iTABs in the ratio (12:12:14:13:13:13), for Noiler, FUNAAB Alpha, Shika Brown, Kuroiler, Sasso and Fulani chickens, respectively. Genomic DNA was extracted from seventy-seven birds randomly selected from the six iTABs. A 450-bp mtDNA D-loop region was sequenced. The highest (H=5) and the lowest (H=2) number of haplotypes were found within Noiler, and Shika Brown/Fulani, respectively. Among the six populations, haplotype and nucleotide diversity was 0.558±0.063 and 0.0064±0.0013, respectively. A total of 8 haplotypes were identified from 15 polymorphic sites. These haplotypes clustered into three clades with 87.89% of the total maternal genetic variations occurring within population. Fulani and Shika Brown had the least (0.000) genetic distance. Tajima's D was negative among populations and within Noiler, Kuroiler, Sasso and Fulani populations but was only statistically significant within the Noiler population. Diversity indices of this study revealed that mtDNA polymorphism was on the average both within populations and among populations. The results indicate the existence of two distinct maternal lineages from Southeast Asia, south central and Southeast China evenly distributed among the iTABs. The average genetic diversity observed within population can be utilized for the long-term genetic improvement and stabilization of the breeds.

Keywords: Differentiation, iTABs, Phylogenetics, Polymorphism, Nigeria, Smallholder-poultry.

الملخص

سلالات الدجاج المحسنة المتكيّفة استوائيًا (iTABs) هي دجاجات ذات مدخلات منخفضة ومخرجات عالية ومناسبة للدواجن ذات الحيازات الصغيرة (SHP). تم تقديم ستة Sasso، Noiler، Kuroiler، FUNAAB Alpha، Fulani) iTABs و Sasso، Noiler، Kuroiler، FUNAAB Alpha، Fulani) iTABs و Shika (Brown)، وتم تربيتها في ظل نظام إدارة شبه مكثف واختبار ها في إطار مشروع المكاسب الجينية للدجاج الأفريقي في نيجيريا. كان الهدف من هذه الدراسة هو تقييم التنوع الجيني لـ iTABs التي تم اختبار ها في ولاية إيمو بنيجيريا و ذلك باستخدام الحمض النووي الميتوكوندريا (mtDNA)، تم جمع عينات الدم من 77 دجاجة تنتمي إلى هذه المجموعات الست من iTABs بنسبة (21: 12: 14: 13: 13: 13: 13)، لدجاج ital، Noiler، محمع عينات الدم من 77 دجاجة تنتمي إلى هذه المجموعات الست من iTABs بنسبة (14: 13: 13: 14: 15)، لدجاج source، محمع عينات الدم من 77 دجاجة تنتمي إلى هذه المجموعات الست من iTABs بنسبة (15: 13: 13: 14: 15)، لدجاج Sasso، Kuroiler، Shika Brown، FUNAAB Alpha، على التوالي. تم استخراج الحمض النووي الجينومي من سبعة وسبعين طائرًا تم اختبار هم عشوائيًا من ستة iTABs، تم نطبقة حلقة Noiler، على التوالي. تم استخراج بقدرة 450 قاعدة زوجية. تم العثور على أعلى (5 H) وأدنى (2 H) عدد من الأدماط الفردانية (الهبلوتيب) داخل Noiler، و Shika Brown / Fulani، على أداع الحقار الحموعات الستة، قدر تنوع النمط الفرداني والنيوكليوتيدات بـ 60.00 على التوالي. من بين المجموعات الستة، قدر تنوع المط الفرداني والنيوكليوتيدا) مراحل الح و 0.0064 ± 0.0013 على التوالي. تم تحديد ما مجموعه 8 أنماط فردانية من 15 موقعًا متغير ا. تتجمع هذه الأنماط الفردانية في ثلاث مجموعات مع حدوث 87.89 ٪ من إجمالي الاختلافات الجينية الأم داخل السكان. كان لدى Fulani و Fulani و Shika Brown أقل مسافة وراثية (0.000). كانت نتائج D له Tajima مع حدوث 87.89 ٪ من إجمالي الاختلافات الجينية الأم داخل السكان. كان لدى Fulani و Fulani و Shika Brown أوراثية وراثية (0.000). كانت نتائج D له Tajima سالبة بين االعشائر وداخل مجموعات مع حدوث 87.89 ٪ من إجمالي الاختلافات الجينية الأم داخل السكان. كان لدى Fulani و Govol و وراثية (0.000). كانت نتائج D له Tajima سالبة بين االعشائر وداخل مجموعات Noiler و Noiler و Couler و لكنها كانت ذات دلالة إحصائية فقط داخل مجموعة Noiler. كشفت مؤشر ات التنوع لهذه الدر اسة أن تعدد أشكال mtDNA كان في المتوسط داخل العشائر و بين العشائر وبين العشائر وبين العشائر و بين العشائر و مع معامات مؤسرات التنوع لهذه الدر اسة أن تعدد أشكال mtDNA كان في المتوسط داخل العشائر و بين العشائر و بين العشائر و بين العشائر و بين المائل و بين المائل و محموعة Noiler. كشفت مؤشر ات التنوع لهذه الدر اسة أن تعدد أشكال mtDNA كان في المتوسط داخل العشائر و بين العشائر و بين العشائر و بين المائل و بين المائل و بين المائل و بين المائل النتائج إلى وجود سلالتين الأم متميزتين من جنوب شرق آسيا وجنوب وسط وجنوب شرق الصين موز عين بالتساوي بين TAB. يمكن استخدام متوسط التنوع الجيني الملاحظ داخل العشائر من أجل التحسين الجيني على المدى الطويل و بين بين TAB.

الكلمات المفتاحية: تمييز، iTABs ، تطور السلالات، تعدد الأشكال، نيجيريا. الدواجن الريفية.

Introduction

Smallholder poultry (SHP) production is essential for the enhancement of the socio-economic status of Nigerians and has the potential for poverty alleviation as well as wealth creation for the poorest of the poor (Sonaiya et al., 1999). However, SHP in Nigeria has little or no contribution to the country's agricultural gross domestic product (AgGDP) largely because most smallholder poultry farmers practice subsistence farming, using unimproved and low producing breeds of chicken (Sonaiya et al., 1999). Since, the major priority of today's rural poultry farmers is not only having birds that lay more eggs but also having birds that lay eggs with an optimum size as well as birds that grow to optimum body weight with plumage color similar to the indigenous birds (Mahendra, 2015), it becomes necessary to improve smallholder poultry production.

Many development projects have been put in place to improve smallholder family chicken production in Nigeria; most of which focused on control of diseases, reduction in predation and mortality through vaccination campaigns, control of internal and external parasites, and improvements in housing, feeding, management of the laying process with natural incubation and chicks' management (Wethli, 2003; Sonaiya, 2014a; 2014b). The World Bank spent many years looking for high-leverage opportunities to help national governments to invest in smallholder poultry systems using highly productive exotic genotypes, but the decision to not invest always came down to the inability of poor farmers to access the feed grains and health products required for these enterprises (Smith et al., 2013).

It was in view of this that the African Chicken Genetic Gains (ACGG) project in Nigeria, introduced six improved tropically adapted chicken breeds (iTABs) to smallholder poultry farmers under the scavenging and semi-scavenging management systems (Yakubu et al., 2019).

Soinaya (2015) reported that the adoption of these improved tropically adapted chicken breeds (iTABs) into the tropically farming system has the potential for achieving the prospect of Mahendra (2015) and in addition, has the capacity of multiple functions which includes: fighting malnutrition, better price, consume minimum land, labor and capital, required low skilled labor as well as providing regular source of income to smallholder poultry farmers. This implies that these iTABs are characterized by huge genetic resources necessary for transforming the smallholder poultry production in the tropics (http://www.africacgg.net - June 2nd 2017). Bamidele et al. (2020) reported these iTABs to be SHP-specific hybrid germplasms with dual-purpose functions (meat and egg production), while Alabi et al. (2020) asserted that the introduction of the iTABs has reportedly improved the livelihoods, food security and socio-economic status of SHP farmers under the ACGG project in Nigeria.

However, these genetic resources (iTABs) altogether could exhibit a striking variety of characteristics as a result of genetic changes during their development under different environments and towards different selection objectives. Hence, it becomes necessary to further identify and evaluate these genetic resources in terms of biodiversity, conservation, and utilization as to their potential contribution to agricultural production in the future using molecular characterization.

Molecular characterization can play a role in uncovering the history and estimating the diversity, distinctiveness and population structures of Animal Genetic Resources (AnGR). It can also serve as an aid in the genetic management of small populations to avoid excessive inbreeding (Bamshad et al., 2003). Microsatellites have been widely and frequently used for evaluation of genetic diversity in livestock including chicken (Sunnucks, 2011). Although, they are good for pedigree and population structure analysis, however, they may not be a very reliable method for deep phylogenetic analysis because they do not offer insight into distant relationships (Laga et al., 2004).

However, mitochondrial DNA polymorphism has uncovered extensive insight into phylogenetic and genetic distance analysis. mtDNA markers may additionally offer a rapid way of detecting hybridization between farm animal species or subspecies (Nijman et al., 2003). Galtier et al. (2009) reported that mtDNA markers have been found in great abundance in the cell cytoplasm and hence easily amplified. Saccone et al. (1990) suggested that different regions of mtDNA evolve at different rates, while the displacement loop (*D-loop*) is the major control region for mtDNA expression and diversity. The evolutionary rate of the mitochondrial genome is five to 10 times higher than the nuclear genome, and has a wider range of utility in the study of ancient population structures, inter-species variability, relationships between populations or species, and identification of maternal lineages (Brown et al., 1982; Niu et al., 2002; Liu et al., 2004; 2006). The polymorphism in the sequence of the hypervariable region of the *D-loop* or control region of mtDNA have contributed greatly to the identification of the wild progenitors of domestic species, the establishment of the geographic patterns of genetic diversity and the understanding of livestock domestication (Bruford et al., 2003) and on chickens (Muchadeyi et al., 2008; Razainfindraibe et al., 2008; Adebambo et al., 2010; Nwacharo et al., 2010).

The origin and domestication of chicken are well documented. Crawford (1990) reported that recent chicken is formed from several *Gallus* sub-species and the number of sub-species involved in the origin of chicken is controversial and uncertain. The pluralism scholars suggested that the red jungle fowl (Gallus gallus) is the main ancestor whiles the Ceylon jungle fowl (CJF) (G. lafayetti), Grey junglefowl (GrJF) (Gallus. sonneratti) and Green jungle fowl (GJF) (Galus. Varius) are the secondary. In contrast to this, Darwin (1868) suggested that the red jungle fowl is the only ancestor of all domestic chicken hence suggesting single maternal origin of domestic chicken. The maternal lineage sharing has been reported among different indigenous chicken breeds of various geographical locations (Fumihito et al., 1996; West and Zhou, 1988; Liu at al., 2004; Nishibori et al., 2005). West and Zhou (1988) proposed an earlier origin in Southeast Asia, before the 6000 BC, based on archaeological evidence from China, Southeast Asia, and Europe, and palaeo climatic evidence in China. Liu et al. (2006) supported the theory of multiple origins in South and Southeast Asia from China and/or surrounding areas (i.e., Vietnam, Burma, and Thailand), and the Indian subcontinent for Asian jungle chickens. Additionally, Oka et al. (2007) confirmed the originality of Southeast Asian chicken, thus, suggesting that Japanese native chickens have multiple origins. Bjørnstad et al. (2009) suggested single maternal origins for the southwestern Nigerian domestic chicken while Cuc et al. (2011) reported multiple maternal lineages of Vietnamese local chickens.

According to suggestion based on a whole mitochondrial genome study, insight into the phylogenetic analysis of the origin of domestic chicken reported 14-haplogroup setting (A-J and W-Z) based on mtDNA D-loop sequences in 206 red jungle fowls from eight countries (China, India, Indonesia, Laos, Myanmar, Philippines, Thailand, and Vietnam) and 3797 indigenous chickens from 30 countries in Asia, Europe, Africa, South America, and six Pacific islands (Miao et al., 2013). These haplogroup setting are otherwise referred to as clades.

However, insight on variation across the entire chicken mitochondrial genome can be useful for defining the molecular basis of many metabolic disorders, diseases, and abnormalities that affect chickens (Guan et al., 2012). Thus, genetic diversity within and between species in a given population serves as an important tool required to withstand any environmental changes for adaptation and survival (Abde-Basset et al., 2014). Increased population genetic diversity is highly correlated with increased population fitness; hence maintenance of genetic diversity is imperative for conservation.

Therefore for the conservation of the iTABs, for effective recommendations for a planned breeding program aimed at improving and continual distribution of these breeds to smallholder poultry farmers in Nigeria specifically in the South East, we evaluated the genetic diversity of the iTABs introduced to SHP farmers in Imo State Nigeria using the hyper variable D-loop region of mtDNA in order to obtain the level of mitochondrial DNA polymorphism among the populations, to estimate the genetic distance

and gene flow (diversity) within and among the chicken populations sampled, to establish pylogenetic relationships among the iTABs and to ascertain the maternal lineage and origin of the breeds. For the context of this study, we only analyzed haplogroups C, D E F, H, I and J.

Materials and Methods

Study Area and Populations

Samples were collected from three on-farm sites of the African Chicken Genetic Gains (ACGG) project in Imo State, Nigeria. The ACGG is a platform for testing, delivering, and continuously improving tropically-adapted chickens for productivity growth in 3 selected African countries: Ethiopia, Tanzania and Nigeria (www.africacgg.net). In Nigeria, the on-farm test was conducted from 2016 - 2018 in which six selected improved tropically adapted chicken breeds (iTABs) that originated in various localities of Nigeria, France and India; were distributed in five zones represented by 'States' inclusive of Imo State (Fig. 1). Imo State is located in the humid forest agro-ecological zone of southeastern Nigeria, and lies between Latitude 4°45' N and 7° 15'N; Longitude 6°50' E and 7°25'E. This agro-ecological zone is characterized annually, by an average rainfall of 2219mm, average relative humidity of 80.0%, and a temperature (⁰C) range of 26.4 (min) – 32.1 (max) (Yakubu et al., 2019).

Figure 1. Map of Nigeria showing the study location of Imo State and the breed origin of the iTABs developed by the ACGG project team (samples used). White space in the map represent the study location-Imo State.

Experimental Birds/Sample Collection

A total of 77 chickens from the six iTABs (i.e., 12 each of FUNAAB Alpha and Noiler, 13 each of Fulani, Kuroiler, and Sasso and 14 Shika Brown) were randomly selected from six households in each of the three project sites of ACGG in Imo State. (Fig, 2 and Table 1). The chickens were raised under the semi-scavenging and scavenging management systems. The hens were sampled at the peak of laying while the males were sampled at an average body weight of 2kg. 2ml of whole blood were collected from the wing vein of each sampled chicken into ethylene-diamine-tetra-acetic acid (EDTA) tubes and stored at -20° C prior to laboratory analysis.

Figure 2. Map of Imo State showing the three study locations.

DNA Extraction, Polymerase Chain Reaction (PCR) and Sequencing of D-Loop (Control) Region Of mtDNA

DNA was extracted from 200 µl of whole blood samples with the aid of Quick-DNATM Mini prep Plus Kit (Zymo Research, USA). All procedures were carried out according to the manufacturer's recommendations. A five hundred and ninety-two (592) base pair region of the mtDNA D-loop was amplified by polymerase chain reaction (PCR) using L16750:5'- AGGACTACGGCTTGAAAAGC -3' (Desjardins & Morais, 1990) (for the forward primer, and H547: 3'-ATGTGCCTGACCGAGGAACCAG -5', (Komiyama et al., 2003) (for the reverse primer, as suggested by (Mobegi et al., 2005). The amplification was done with a Gene Amp PCR System 9700 (USA). Polymerase chain reaction was conducted at 96°C for 15 mins. The second step involves 35 cycles consisting of 30-sec denaturation at 95°C, 30 sec annealing at 56°C and 30 mins extension at 70°C, with a final extension at 70°C for 5 mins. Polymerase chain reaction products were electrophoresed at 120V in 20 mins on 1.5% agarose gels (Fig. 3), and purified before sequencing using exofast protocol following the manufacturer's guide. Four hundred and fifty base pairs (450bp) D-loop region of the mtDNA was sequenced at STAB-VIDA laboratory Quinta De-forre Portugal using G16750 x L sequencer with 20 µl reaction comprising at least 20ng of purified PCR product as template DNA, 8 µL of Big Dye Terminator Reaction Mix (dNTPs, ddNTPs, buffer, enzyme and MgCl2), 8 µl of deionized water, 2 µl of primer programmed at 35 cycles at 95°C for 10 seconds, 60°C for four minutes. Only the forward primer (5'- AGGACTACGGCTTGAAAAGC -3') was used for the sequencing

Statistical analysis

Finch TV software version 1.4.0 (www.geospiza.com/fintchtv) was used to view, assemble and edit the sequences while a total of 298 bp were realized and used for subsequent analysis. MEGA version X

(Kumar et al., 2018) was used to align the D-loop sequence to the *Gallus gallus* reference sequence (Accession No: AB526207), following 1000 bootstrap replicates, a maximum Likelihood (ML) tree was generated. Nine reference sequence from the most frequent haplotypes of Liu's network (Liu et al., 2006) and the three additional clades (D, G and F) of Oka et al. (2007) were included in the analysis (Table 2). Network 10.2.0.0 (Available at https://www.fluxus-engineering.com) was used for the median-joining of both the phylogenetic tree of the haplotypes of the Improved Tropically Adapted Chicken Breeds (iTABs) used in this study and also for estimating the extent of relationship between the present studied iTABs with the D-loop sequence of other chicken (Liu et al., 2006 and Oka et al., 2007) obtained from GenBank. DnaSP 6.11.01 software (Rozas et al., 2017) was used to estimate diversity indices based on DNA polymorphism in the aligned regions including haplotype diversity (Hd), level of genetic distance, and FST (Wright and Pickton, 1998); Arlequin 3.5.2.2 software (Excoffier and Lischer, 2015) was used to estimate hierarchical analysis of molecular variance (AMOVA) based on distance method (Pairwise differences) (Wright and Pickton, 1998; Excoffier et al., 1992; 2006).

Breeds (abbreviation)	Sample size (Population size)	Longitude and Latitude	Main skin color	Main shank color	Main beak color	Centre of breed developm ent
Shika Brown (SB)	14(210)	Lat 4°45'N and 7°15'N Long 6°50'E and 7°25'E	Brown	Golden- brown	Brown	Nigeria
Fulani (Fi)	13(66)	Lat 4°45'N and 7°15'N Long 6°50'E and 7°25'E	Spotted white	Brown	Grey	Nigeria
Sasso (Sa)	13(210)	Lat 4°45'N and 7°15'N Long 6°50'E and 7°25'E	Spotted white	Light brown	Grey	France
Kuroiler (Ku)	13(175)	Lat 4°45'N and 7°15'N Long 6°50'E and 7°25'E	Spotted grey/ Black	Brown	Grey	India
Funaab- ALPHA(FU)	12(68)	Lat 4°45'N and 7°15'N Long 6°50'E and 7°25'E	Black	Black	Black	Nigeria
Noiler (No)	12(140)	Lat 4°45'N and 7°15'N Long 6°50'E and 7°25'E	Spotted grey/ Black	White	White	Nigeria

Table 1. Study samples and descriptions

450 bp amplicon size for the iTABS: Noiler (No), FUNAAB Alpha (Fu), Shika-Brown (Sb), Kuroiler (Ku), Sasso (Sa), and Fulani (Fi), M= 200 bp molecular –weight size marker Numbers in parenthesis represent the population size of each breed found in Imo State. Numbers besides the parenthesis represents the number/size of each breed used for this experiment. Source (http://www.africacgg.net-2nd June, 2017; Okorie, 2015).

Figure 3. Polymerase chain reaction gel electrophoresis result of mtDNA D-loop region showing a **Table 2.** Haplotypes of reference breed obtained from GenBank.

S/N	Haplotype Name	Accession No. in GenBank	Reference
1	Liu_A1	AB114069	Liu et al. (2006) haplotype A1
2	Liu_B1	AB007744	Liu et al. (2006) haplotype B1
3	Liu_C1	AB114070	Liu et al. (2006) haplotype C1
4	Liu_D1	AY588636	Liu et al. (2006) haplotype D1
5	Liu_E1	AB114076	Liu et al. (2006) haplotype E1
6	Liu_F1	AF512285	Liu et al. (2006) haplotype F1
7	Liu_G1	AF512288	Liu et al. (2006) haplotype G1
8	Liu_H1	D82904	Liu et al. (2006) haplotype H1
9	Liu_I1	AB009434	Liu et al. (2006) haplotype I1
10	Oka_D6	AB268535	Oka et al. (2007) haplotype D6
11	Oka_G1	AB268545	Oka et al. (2007) haplotype G1
12	Oka_F1	AB268543	Oka et al. (2007) haplotype F1

Results

We determined the haplotype sequences of the 298 bp fragments of the mtDNA D-loop region in 77 individuals from 6 populations of the Improved Tropically Adapted Chicken (iTABs). The alignment with the reference sequences produced 329 nucleotide sites, a total of 8 haplotypes, with 150 polymorphic sites (Fig. 4) consisting of 140 singleton and 10 parsimony informative sites (Supplementary Table 1). The highest haplotype had 50 individuals of the iTABs found under haplotype 2, followed by 10 individuals found under haplotype 1, and 5 individuals of iTABs found under haplotype 5. The least common haplotypes had 1 individual of the iTABs each for haplotype 3 and 4. Haplotype 5 had 5 individuals of the iTABs, haplotype 6 and 7 contained 4 individuals of iTABs each while only 2 individuals were found under haplotype 8. All variable sites were due to substitution mutations, and 94.6% of these mutations were transitions.

Genetic Diversity Indices of iTABs

Table 3 shows values for diversity indices for the study of mtDNA *D-loop* of the improved tropically adapted chicken breeds (iTABs) in Imo State Nigeria. The observed haplotype diversity among the populations was 0.558 ± 0.063 . Within the populations, varied polymorphic sites were obtained with the lowest value (*S*=1) each in Fulani and Shika Brown and the highest (*S*=11) in Noiler. The number of haplotypes in each population of iTABs ranged from the lowest value (H=2) in Fulani and Shika Brown to the highest value (H=5) in Noiler (Table 4). The overall haplotype diversity was 0.558 ± 0.063 . Haplotype diversity within populations was greatest in in FUNAAB Alpha (0.742 ± 0.084) and lowest in Fulani (0.154 ± 0.126).

Also, the overall nucleotide diversity among the six populations was 0.0064 ± 0.0013 ; while within the populations, nucleotide diversity ranged from 0.0005 ± 0.0004 in Fulani to 0.0106 ± 0.0024 in FUNAAB Alpha. Within the populations, Tajima'D though negative (-1.942) but showed significant value at

(P<0.05) in Noiler; and ranges from the least 0.140 in Noiler to the highest 1.176 in Kuroiler. Among the population of study, Tajima'D revealed a negative and non-significant value -1.379 at (P<0.01).

123 456 789 912 345 678 901 234 567 890 123 456 789 912 345 678 901 234 567 890 123 456 789 912 345 678 901 234 567 890 123 456 789 101 641 ATT TTT TTTT TTT					Ш	Ш	Ш	122	222	222	223	333	33	33	333	444	444	444	455	555	555	
ket CT ACT TTC CCC TTC CCC CC ACA ATC TA ATA ATA<		123	456	789	012	345	678	901	234	567	890	123	45	6	789	012	345	678	901	234	567	N
Hap_1 I.T. C.C. C.T. MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 10 Hap_3 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 1 Hap_4 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 1 Hap_5 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 1 Hap_6 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 1 Hap_6 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 1 Hap_6 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 1 Hap_8 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 2 Hap_8 T.C. C.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 2 Hap_8 T.C. T.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 2 Hap_8 T.C. T.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 2 Hap_8 T.C. T.C. CT MAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA T.C. 2 Hap_8 GGA CCT ACT CAT AGGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CAC ACC T.C. 1 Hap_1 GGA CCT ACT CAT GCC CCT TTT TTT TTT T	Ref	α	ACT	πι	α	π	000	ω	AGG	GGG	TCT	ATG	AT	A 4	ATC	GAT	MT	Π	TAC	ATC	CAT	
Hap_2 IC CC IT ALA ALA ALC IT CC ALT ALA ALA ALC IT CC ALT ALA ALA ALA ALT IT CC ALA ALG ALA ALA ALA ALT IT CC ALA ALT ALA ALT TL IT CC ALA ALA ALT TL IT CC ALA ALA ALA ALT TL IT CC ALA ALA ALT TL IT CC ALA ALA ALA ALT TL TL TL TL IT ALA ALA ALA ALA ALT TL TL TL ALA ALA ALA ALT TL TL TL TL TL TL ALA ALA <t< td=""><td>Hap_1</td><td>JI.</td><td>0.0</td><td>.α</td><td>AAT</td><td>AGA</td><td>AT(</td><td>i GTT</td><td>.CA</td><td>ACA</td><td>ATC</td><td>TU</td><td>N TO</td><td>T (</td><td>LAT</td><td>Π.</td><td>cc</td><td>CAC</td><td>AG</td><td>I CA</td><td>1.0</td><td>10</td></t<>	Hap_1	JI.	0.0	.α	AAT	AGA	AT(i GTT	.CA	ACA	ATC	TU	N TO	T (LAT	Π.	cc	CAC	AG	I CA	1.0	10
Hap_3 T.C. J.C. ATI AGA ATG GTI J.C. ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. I Hap_4 J.C. C.C. AT AGT AGA ATG GTI J.C. ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. I Hap_5 TIC. C.C. C.T. AGT AGA ATG GTI J.C. ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. S Hap_6 J.C. C.C. AT AGA ATG GTI J.C. ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. S Hap_7 J.C. C.C. J. AAT AGA ATG GTI J.C. ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. 4 Hap_8 TIC. TIC. C.T. AAT AGA ATG GTI J.C. ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. 2 J.T. L.C. J.C. AT AGA ATG GTI J.C.A ACA ATC TCA TCI CAT TI. CCC CAC AGT CCA T.C. 2 Hap_8 TIC. TIC. C.T. AAT AGA ATG GTI J.C.A ACA ATC TCA TCI CAT TCI CAT TI. CCC CAC AGT CCA T.C. 2 J.T. C.C. J.T. AAT AGA ATG GTI CA ACA ATC TCA TCI CAT TCI CAT TT. CCC CAC AGT CAT T.C. 2 J.T. C.C. J.T. AAT AGA ATG GTI CA ACA ATC TCA TCI CAT TCI CAT TCI CAT AGT CAT T.C. 2 J.T. C.C. J.T. AAT AGA ATG GTI CA ACA ATC TCA TCI CAT TCI CAT TT. CCC CAC AGT CAT T.C. 2 J.T. C.C. J.T. AAT AGA ATG GTI CA ACA ATC TCA TCI CAT TCI CAT TT. T.C. CCC AGA AGT CAT T.C. 2 J.T. C.C. C.T. ATT AGA ATG GTI CA ACA ATC TCA TCA TCI CAT TCI TT. T.C. CCC AGT AGA AGA ACC 10 Hap_1 GGA CCT ACT CAT GCC CCT TTI TCI CC GCG CAT GGA TAT TGC CCC AGT AGA AGA ACC	Hap_2	JI.	0.0	D.	AAT	AGA	AT(i GTT	.CA	ACA	ATC	TU	I TO	T (TAT	Π.	ccc	CAC	AG	I CCA	1.0	50
Hap_4 .TC C.C. C.T. AGT AGA ATG GTT .CA ACA ATC TCA TCT CAT TIC. CCC. CAC AGT CCA. T.C. I Hap_5 TTC CTC. CCT. AAT AGA. ATG GTT .CA ACA ATC TCA. TCT. CAT. TTC. CCC. CAT. AGA. ATG GTT .CA ACA ATC TCA. TCT. CAT. CCC. CAT. AGA. ATG TTC. CAT. AGA. ATC TCA. TTC. CCC. CAT. AGA. ATG TTC. CAT. AGA. ATG TTC. CAT. AGA. ATG TTC. CAT. AGT CAT. TTC. CCC. CAT. AGA. ATG TTC. CAT. AGA. ATG TTC. CAT. AGT CAT. TTC. TTC. CCC. AGT CAT. TTC. TTC. CCC. AGT CAT. TTC. TTC	Hap_3	T.C	. .	D.	AAT	AGA	ATG	GTT	.CA	ACA	ATC	TCA	TC	T C	AT	Π.	00	CAC	AGI	(CA	1.0	1
Hap_5 TTC CTC CTC AT AGA ATG GTL ALA ATC TCA TTC AT TTC CCA AGT AGA ATC TCA TTC CCC AGT CCA TTC AT AGA ATG GTL CA ACA ATC TCA TTC CCC AGT CCA TTC AT AGA ATG GTL CA ACA ATC TCA TC CCC AGT CCA TTC AT AGA ATG GTL CA ACA ATC TCA TCT TTC CCC AGT AGT AGA ATC TCA TCT TTC TTC ATT AGT AGA ATC TCA TCT TTC TTC AGT AGT AGA ATC TCA TCT TTC TTC AGT AGT AGA ATC TAT TTC CCC AGT AGT AGT AGT AGA ATC TAT TTC CCC AGT AGT AGT AGT AGT AGT	Hap_4	JT.	0.0	D.	AGT	AGA	ATG	GΠ	.CA	ACA	ATC	TCA	TC	0 1	AT	Π.	cc	CAC	AG	T (CA	1.0	1
Hap_6 '.TC C.C. C.T. AAT AGA ATG GTT GCA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA TGC 4 Hap_7 '.TC C.C. C.T. AAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA TGC 4 Hap_8 TTC TTC CCT AAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA TGC 4 Hap_8 TTC TTC CCT AAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA TGC 4 Hap_8 TTC TTC CCT AAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TT. CCC CAC AGT CCA TGC 4 Hap_8 TTC TTC CCT AAT AGA ATG GTT .CA ACA ATC TCA TCT CAT TTC CCT ACT CAT GCC TT. 777 777 778 888 888 899 999 999 900 012 345 678 901 234 567 890 012 345 678 NI NI NI NI NI NI NI NI NI AGA ACC 10	Hap_5	π	α	œ	AAT	AGA	ATG	GTT	.CA	ACA	ATC	TCA	TCT	a	AT .	π	00	CAC	AG	T CCA	T.C	5
Hap_7 .TC C.CCT AAT AGA ATG GTT CA ACA ATC TCA TCT CA AGA ATC TCA TC AGT CCA TGC AGT CCA TGC TGC TGC AGT CCA TGC TGC TGC TGC TGC TGC AAT GGT CA ACA ATC TGT TGC TGC AGT CCA TGC AGT AGC AGC TGC AGGA AGC AGC TGC TGC TGC TG	Hap_6)T.'	0.0	D.	AAT	AGA	ATG	GTT	GCA	ACA	ATC	TCA	TCT	Q	T	Π.	00	CAO	AG	it (CA	TGC	4
Hap_8 TIC TIC CIC AAT AGA ATG GTI CA ACA ATC TCA TCC CA AGT CA TC TCC CA AGT CA TCC TCC TCC CAC AGT CA TTT	Hap_7	JT.	0.0	D.	AAT	AGA	ATG	GTT	A).	ACA	ATC	TCA	TCT	U	AT	Π.	(((CAC	A	GT CCA	TGC	4
111 1	Hap_8	π	π	œ	AAT	AGA	ATG	GTT	.CA	ACA	ATC	TCA	TCT	U	AT	π	00	C.AC	A	GT CCA	1.0	2
111 111 111 111 111 111 111 111 556 666 666 777 777 788 888 889 999 999 000 000 000 890 123 456 789 012 345 678 901 234 567 890 123 456 789 012 345 678 N Ref TAC TIG CIA ACC AAT GA CCT TTT TTT TTT CC CAT TCT TCA TCG GA CAT TTT TTT TTT CC CAT TTT TTA TCC AGA AAC ACC 10 Hap_1 GGA CCT ACT CCT TTT TTT CTC GGA AAC ACC 11 Hap_3 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA AAC ACC 1 Hap_4 GGA CCT ACT CAT </th <th></th>																						
556 666 666 777 777 788 888 888 989 999 999 000 000 000 890 123 456 789 012 345 678 901 234 567 890 123 456 789 012 345 678 N Ref TAC TTG CTA ACC AAT GTA GGC TAA TTA TCC ATT GCC CAT TCT TCA TCG GAA Hap_1 GGA CCT ACT ACC CCT TTT CTC GGA TAT TCA ACC ACC ACC 10 Hap_2 GGA CCT ACT ACT GCC CCT TTT TTT CTC GGA TAT TGC CTC CAG AAC ACC 10 Hap_3 GGA CCT ACT CAT GCC CCT TTT CTC GGA TAT TGC CTC AAG AAC ACC 1 H																			Ш	Ш	Ш	
bit 123 436 707 012 343 676 707 123 436 707 123 707 <th></th> <th>556</th> <th>666</th> <th>66</th> <th>6 1</th> <th>666 700</th> <th>111</th> <th>111</th> <th>111</th> <th>788</th> <th>8 88</th> <th>888 8</th> <th>88</th> <th>889 000</th> <th>999</th> <th>999</th> <th>99</th> <th>9</th> <th>000</th> <th>000</th> <th>000</th> <th>N</th>		556	666	66	6 1	666 700	111	111	111	788	8 88	888 8	88	889 000	999	999	99	9	000	000	000	N
Nef TAC TIG CIA ACC AAT GIA CGC TAA TTA TCC ATT TCT TCT TCA TCG GAA Hap_1 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAA CCC CAT TTT CTC GCG CAT GGA TAA CAC ACC SO Hap_2 GGA CCT ACT CAT GCC CCT TTT CTC GGA GCA CCC ACT TAT GCC CCT TTT CTC GGA TAA CAC ACC I Hap_3 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA ACC ACC I Hap_4 GGA CCT ACT CAT GCC CCT TTT< CTC GCG AT TGC CTC CAG		070	123	40	0	107	012	343	0/0	70	1 43		0/	07U	123	900	R	57	012	343	0/0	
Hap_1 GGA CCT ACT CAT GCC CCT TTT CTC GGA TAT TGC TAT TGC TGC CAT GGA ACC AAC ACC SO Hap_3 GGA CCT ACT CAT GCC CCT TTT CTC GGA TAT TGC CAG GAA AAC ACC SO Hap_3 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CCC CAG AAC ACC I Hap_4 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC I Hap_5 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_7 GGA CCT ACT CAT GCC <	Ref	TAC	ΠG	iC	IA I	ACC	AAT	GTA	CG	C TAA	Π	IA T		ATT		CAT	T	T	TCA	TCG	GAA	
Hap_2 GGA CCT ACT CAT GCC CCT TIT CTC GGA TAT TGC CAT GGA ACT CAT GCC CCT TIT CTC GGA TAT TGC CAT GGA ACT CAT GCC CCT TIT CTC GGA TAT TGC CAG AAC ACC I Hap_3 GGA CCT ACT CAT GCC CCT TIT CTC GGA TAT TGC CAG GAA AAC ACC I Hap_4 GGA CCT ACT CAT GCC CCT TIT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_7 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_7 GGA CCT ACT CAT GCC CCT TTT CTC <td< td=""><td>Hap_I</td><td>GGA</td><td>00</td><td>A</td><td>α</td><td>CAT</td><td>GCC</td><td>œ</td><td>Π</td><td>σ</td><td>C G(</td><td>GO</td><td>AT</td><td>GGA</td><td>TAT</td><td>TGC</td><td>C</td><td>C</td><td>CAG</td><td>MC</td><td>ACC</td><td>10</td></td<>	Hap_I	GGA	00	A	α	CAT	GCC	œ	Π	σ	C G(GO	AT	GGA	TAT	TGC	C	C	CAG	MC	ACC	10
Hap_3 GGA CCI ACI CCI III CIC GGG CAI GGA IAI IGC CIC CAG AAC ACC I Hap_4 GGA CCT ACT CAT GCC CCT TTT CTC GGA TAT TGC CTC CAG AAC ACC I Hap_5 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA ACC AAC ACC 4 Hap_6 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_7 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_8 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT <td< td=""><td>Hap_2</td><td>GGA</td><td>00</td><td>A</td><td>a a</td><td>CAT</td><td>GCC</td><td>m</td><td>Π</td><td>היו</td><td>C G(</td><td>(G (</td><td>AT</td><td>GGA</td><td>TAT</td><td>TGC</td><td>0</td><td>τ</td><td>CAG</td><td>MC</td><td>ACC</td><td>50</td></td<>	Hap_2	GGA	00	A	a a	CAT	GCC	m	Π	היו	C G((G (AT	GGA	TAT	TGC	0	τ	CAG	MC	ACC	50
Hap_4 GGA CCI ACI GCI CCI III CCI III CCI GGA CCI ACI GCI CCI III CCI GGA CCI ACI GCI GCI TIT CCI GCG CAI GGA TAI TGC CIC CAG GAA AAC ACC 4 Hap_6 GGA CCC ACI CAI GCC CCI TIT CTC GCG CAI GGA TAI TGC CIC CAG AAC ACC 4 Hap_7 GGA CCT ACI CAI GCC CCT TTT CTC GCG CAI GGA TAI TGC CTC CAG AAC ACC 4 Hap_8 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAI TGC CTC CAG AAC ACC 4 Hap_8 GGA CCT ACT CAT GCC CCT TTT CTC GCG <td< td=""><td>Hap_3</td><td>GGA</td><td>00</td><td>A</td><td>a a</td><td>UNT CUT</td><td>GCC</td><td>00</td><td></td><td></td><td>CG</td><td>G (</td><td>AI</td><td>GGA</td><td>IAI</td><td>TGC</td><td>a</td><td>(v</td><td>CAG</td><td>AAC</td><td>ACC</td><td></td></td<>	Hap_3	GGA	00	A	a a	UNT CUT	GCC	00			CG	G (AI	GGA	IAI	TGC	a	(v	CAG	AAC	ACC	
Hap_5 GGA CCI ACI CAI GCC CCI III CIC GCG CAI GGA IAI IGC CIC CAG AAC ACC 4 Hap_6 GGA CCC ACT CAT GCC CCT ITT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_7 GGA CCT ACT CAT GCC CCT ITT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_8 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 2 111 1	нар_ч	GGA			u a		GLL				ניט		AI	GUA		TUC	u		CAG	AAL	ALL	
Hap_6 GGA CCC ACT CAT GCC CCT HT CTC GGA CAT GCA ACC 4 Hap_7 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_8 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 4 Hap_8 GGA CCT ACT CAT GCC CCT TTT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 2 111 11	нар_5	GGA		A	u a	UNI CUT	600	00			L GI			GGA	IAI	IGC	u	(~	CAG	AAC	ALC	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	нар_6	GGA			() ()	LAI	GUL						AI.	GGA	IAI	160	u		CAG	AAL	ALC	4
Hap_8 GGA CCT ACT CAT GCC CCT TIT CTC GCG CAT GGA TAT TGC CTC CAG AAC ACC 2 111 1	Hap_7	GGA	α	A	α	CAT	GCC	α	Ш	C	C G(.G (AT	GGA	IAI	TGC	C	C	CAG	MC	ACC	4
111 1	Hap_8	GGA	œ	A	α	CAT	GCC	œ	Π	σ	C G(GC	AT	GGA	TAT	TGC	C	C	CAG	AAC	ACC	2
011 111 111 112 222 222 333 333 334 444 444 445 901 234 567 890 123 456 789 012 345 678 901 234 567 890 N Ref CTA CCC CTC CAG ACT CAA ACA GAA GTA TAT GAA AGA AAA Hap_1 TGT ATG TAT TGA CTC TGG CAT TTT CCC TCC TCC 10 Hap_2 TGT ATG TAT TGA CTC TGG CAT TTT CCC TCC TCC 10 Hap_2 TGT ATG TAT TGA CTC TGG CAT TTT CCC TCC TCC TCC 10 Hap_3 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCC TC TCC 50 Hap_4 TGT <t< td=""><td></td><td>ш</td><td>П</td><td>I</td><td>Ш</td><td>Ш</td><td></td><td>П</td><td>ш</td><td>Ш</td><td>1</td><td>П</td><td>Ш</td><td>I</td><td>Ш</td><td>П</td><td>I</td><td>ш</td><td>П</td><td>I</td><td>ш</td><td></td></t<>		ш	П	I	Ш	Ш		П	ш	Ш	1	П	Ш	I	Ш	П	I	ш	П	I	ш	
901234567890123456789012345678901234567890NRefCTACCCCTCCAGACTCAAACACAAGTACTATATGAAAGAAAAHap_1TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCCTCC10Hap_2TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCCTCC50Hap_3TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCCTCC10Hap_4TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCC10Hap_5TGCATGTATTGACTCTGGCATTTTCCCTACCCCTCC11Hap_6TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCC11Hap_6TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCC12Hap_6TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCC14Hap_7TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCC14Hap_7T		011	Ш	I	Ш	10	1 1	22	222	222	3	33	333	3	333	34	4	444	44	4	445	
RefCTACCCCTCCAGACTCAAACACAAGTACTATATGAAAGAAAA Hap_1 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC10 Hap_2 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC50 Hap_3 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC1 Hap_4 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC1 Hap_5 TGCATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC1 Hap_6 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC1 Hap_6 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC3 Hap_6 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCCCC4 Hap_7 TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCC4 Hap_7 TGTATG <th></th> <th>901</th> <th>234</th> <th>4</th> <th>567</th> <th>890</th> <th>) </th> <th>23</th> <th>456</th> <th>789</th> <th>0</th> <th>12</th> <th>349</th> <th>5</th> <th>678</th> <th>90</th> <th>I</th> <th>234</th> <th>56</th> <th>7</th> <th>890</th> <th>N</th>		901	234	4	567	890)	23	456	789	0	12	349	5	678	90	I	234	56	7	890	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ref	CTA	0	C	α	CAO	G /	ICT	CM	AC	A CA	A	GT	A	(TA	TĂ	T	GAA	AG	A	ш	
Hap_2TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC50Hap_3TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC1Hap_4TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC1Hap_5TGCATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC5Hap_6TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC4Hap_7TGTATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC4Hap_8TGCATGTATTGACTCTGGCATTTTCCCTACCCCTCGTTCTCC2	Hap_1	TGT	AT	G	TAT	TG	A (TC	TGG	CA.	T	Π	00	(TAC	00	[TCG	П	1	TCC	10
Hap_3 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC I Hap_4 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC I Hap_5 TGC ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC I Hap_6 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC I Hap_6 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC S Hap_7 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC 4 Hap_7 TGT ATG TAT <td< td=""><td>Hap_2</td><td>TGT</td><td>AT</td><td>G</td><td>TAT</td><td>TG</td><td>A (</td><td>TC</td><td>TGG</td><td>CI.</td><td>ΙT</td><td>Π</td><td>00</td><td>[</td><td>TAC</td><td>00</td><td>[</td><td>TCG</td><td>П</td><td>0</td><td>TCC</td><td>50</td></td<>	Hap_2	TGT	AT	G	TAT	TG	A (TC	TGG	CI.	ΙT	Π	00	[TAC	00	[TCG	П	0	TCC	50
Hap_4 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCC TC TCC I Hap_5 TGC ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCC TC TCC S Hap_6 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC S Hap_6 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC S Hap_7 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCC TC TCC 4 Hap_7 TGT ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCC TC TCC 4 Hap 8 TGC ATG TAT <td>Hap_3</td> <td>TGT</td> <td>AT</td> <td>G</td> <td>TAT</td> <td>TG.</td> <td>A (</td> <td>TC</td> <td>TGG</td> <td>CA.</td> <td>тп</td> <td>Π</td> <td>00</td> <td>(</td> <td>TAC</td> <td>00</td> <td>[</td> <td>TCG</td> <td>П</td> <td>0</td> <td>TCC</td> <td>1</td>	Hap_3	TGT	AT	G	TAT	TG.	A (TC	TGG	CA.	тп	Π	00	(TAC	00	[TCG	П	0	TCC	1
Hap_S IGC AIG TAT IGA CIC IGG CAT TTT CCC TAC CIC ICC S Hap_6 TGT ATG TAT TGA CIC TGG CAT TTT CCC TAC CCC TCG TIC TCC 4 Hap_7 TGT ATG TAT TGA CIC TGG CAT TTT CCC TAC CCC TCG TTC TCC 4 Hap 8 TGC ATG TAT TGA CIC TGG CAT TTT CCC TAC CCC TCG TTC TCC 4 Hap 8 TGC ATG TAT TGA CIC TGG CAT TTT CCC TAC CCC TCG TTC TCC 2	Hap_4	TGT	AT	G	TAT	TG	A (10	TGG	U.	ΙI	Π	00	2	TAC	00		TCG	П	C	100	
HAP_0 IGI AIG IAI IGA CIC IGG CAI III CUC IAC CUC ICG IIC ICC 4 HAP_7 IGI AIG IAI IGA CIC IGG CAI III CCC IAC CCC ICG IIC ICC 4 HAD 8 IGC AIG IAI IGA CIC IGG CAI III CCC IAC CCC ICG IIC ICC 2	Hap_5	IGC	AT	G	TAT	TG	A		TGG	CA CA	11 T		00		TAC	00		ICG	1	(~		5
Hap 8 TGC ATG TAT TGA CTC TGG CAT TTT CCC TAC CCC TCG TTC TCC 2	нар_6 Инг. 7	101	AL	u c	TAT	16	A (uit Tr	100	0	a II T P	н П	00	,	TAC		-	TCC	- 11	n i		4
	Hap 8	TGC	AI At	G	TAT	TG	A (TGG	04	u II I T	П	0	(TAC	00	[TCG	П	ic IC	TCC	2

Figure 4. The polymorphic sites of 8 mtDNA *D-loop* haplotypes of six improved tropically adapted chicken breed and their frequencies (N). Vertically oriented numbers indicate the site position and the sequences shown are only the variable sites. Dots (.) indicate identity with the reference sequence (Ref)

	Among populations		Within population	n			
Diversity indices		Noiler	FUNAAE Alpha -	B- Kuroiler	Shika Brown	Sasso	Fulani
Number of gene copies Number of	77	12	12	13	14	13	13
Variable sites (S)	15	11	9	8	1	7	1
Number of haplotype (h)	8	5	4	4	2	3	2
Hd± SD	0.558 ± 0.063	0.576± 0.163	0.742 ± 0.084	0.603± 0.131	$\begin{array}{c} 0.363 \pm \\ 0.130 \end{array}$	0.295± 0.156	0.154 ± 0.126
Nd±SD	0.0064± 0.0013	$\begin{array}{c} 0.0077 \pm \\ 0.0034 \end{array}$	0.0106± 0.0024	0.0078 ± 0.0033	0.0012 ± 0.0004	$\begin{array}{c} 0.0059 \pm \\ 0.0031 \end{array}$	$\begin{array}{c} 0.0005 \pm \\ 0.0004 \end{array}$
Tajima' D Fu's F	-1.379 -0.389	-1.942 -0.062	0.213 2.110	-0.522 1.343	0.324 0.643	-0.904 2.035	-1.149 -0.537

Table 3. Genetic d	diversity	indices	of iTABs	in In	no State
--------------------	-----------	---------	----------	-------	----------

iTABs= Improved Tropically Adapted Chicken Breeds; SD=Standard Deviation; Hd =Haplotype diversity; Nd= Nucleotide diversity; Tajima'D significant value within population (**P < 0.05). Fu's F significant value (*P<0.05)

Table 4. Haplotype	frequencies in	$D ext{-loop}$	of the	six	Improved	Tropically	Adapted	Chicken	Breeds
(iTABs) in Imo State	e								

Haplotype	Noiler	FUNAAB	Shika	Kuroiler (13)	Sasso (13)	Fulani (13)
	(12)	Alpha (12)	Brown (14)			
Hap_1	1(0.083)	1(0.083)	0	8(0.615)	0	0
Hap_2	8(0.667)	5(0.417)	11(0.786)	3(0.231)	11(0.846)	12(0.923)
Hap_3	1(0.083)	0	0	0	0	0
Hap_4	1(0.083)	0	0	0	0	0
Hap_5	1(0.083)	2(0.167)	0	1(0.083)	1(0.083)	0
Hap_6	0	4(0.333)	0	0	0	0
Hap_7	0	0	3(0.214)	0	0	1(0.083)
Hap_8	0	0	0	1(0.083)	1(0.083)	0

Numbers under each breed (beside the parenthesis) represent the number of such breed within the haplotype and numbers in parenthesis represent the frequency of the breeds found under the respective haplotypes.

Genetic Distance (D) among Populations

Table 5 revealed the genetic distance estimated among populations. The observed genetic distances were relatively the same across breeds with a little deviation. It ranges from (0.000±0.000) lowest between Fulani and Shika Brown which recorded zero genetic distance to 0.018±0.009 between Kuroiler and FUNAAB Alpha. Analysis of molecular variance (AMOVA) based on F-Statistics was obtained in order to understand the partitioning of the level of genetic diversity of the iTABs populations (Table 6). The result revealed that 87.89% of the total genetic variability occurred within individuals in the population of the iTABs. Also, 3.43% and 8.67% of the variations were found among groups and among populations within groups, respectively. Fixation indices (F_{ST}) observed was 0.03431 among groups, 0.08982 among populations within groups, and 0.12105 within populations.

			U				
	No	Fu	Sb	Ku	Sa	Fi	
No		0.006	0.002	0.008	0.004	0.002	
Fu	0.012		0.005	0.009	0.006	0.005	
Sb	0.005	0.008		0.007	0.003	0.000	
Ku	0.014	0.018	0.011		0.008	0.007	
Sa	0.008	0.012	0.005	0.015		0.003	
Fi	0.005	0.008	0.000	0.011	0.004		

Table 5. Genetic distance of the six iTABs in Nigeria

Below diagonal represents distance estimate (d); above diagonal represents Standard deviation. Analysis was computed in Bootstrap model. (No=Noiler, Fu=FUNAAB Alpha, Sb=Shika-Brown, Ku=Kuroiler, Sa=Sasso and Fi=Fulani).

Table 6. Analysis of Molecular Variance (AMOVA)

SOV	Df	Sum of	Variance	%Variance	(F _{ST})	P-value
		Square	components			
Among	1	2.808	0.03027Va	3.43	0.03431	0.282 ± 0.014
groups						
	4	7.020	0.07653Vb	8.67	0.08982	0.010 ± 0.003
Among						
populations within	71	55.056	0.77543Vc	87.89	0.12105	0.002 ± 0.001
groups						
	76	64.883	0.88223			
Within populations						
Total						

SOV=source of variation; Df= degree of freedom; SS= sum of square; FST=Fixation indices.

Pylogenetic Relationship of the iTABs

The phylogenetic relationship of the iTABs from six different populations based on the mitochondrial *D-loop* is presented in (Fig. 5). The phylogram divided the iTABs populations into two main clusters defined by five haplogroups which separated the samples based on the evolutionary relationship. Further analysis using the median-joining network analysis of the 8 haplotypes found among the study populations (Fig. 6) revealed three major Clusters (Cluster A, B, and C). Cluster A centered on haplotype 2 which comprised of the majority of the haplotypes (haplotypes 4, 1, 7 and 6) found in this study. Cluster B comprised of only haplotype 3 and was obtained after 4 mutations from Cluster A. Lastly, cluster C comprised of haplotype 5 and 8 with 4 mutational distances.

Figure 5. Maximum Likelihood Phylogenetic tree showing the evolutionary relationship between the six populations of iTABs haplotypes based on mitochondrial *D-loop* region. The numbers at nodes represent the percentage bootstrap values for interior branches after 1000 replications.

Figure 6. Median joining network profile of mtDNA D-loop haplotypes observed among the iTABs. The circle size corresponds to haplotype frequency and the numbers on the line correspond to mutational positions connecting haplotypes. Empty circles are median vectors used in connecting indirectly related haplotypes.

Maternal Lineage/Inheritance

In order to evaluate the maternal lineage of the iTABs, a maximum likelihood phylogenetic tree was reconstructed from 8 haplotypes identified in 77 sequences of iTABs together with 12 reference sequences of Liu et al. (2006) and Oka et al. (2007) (Fig 7). The phylogram split all the populations into two main clusters (clusters one and two). Cluster one is further divided into two sub-clusters (sub-cluster one and two). On the other hand, cluster two is further divided into two sub clusters (sub cluster three and four); while sub cluster four was splited into a new lineage with a recent common ancestor. In all five haplogroups were identified (haplogroup A, B, C, D and E), each containing four haplotypes. Two haplotypes from the studied population (haplotypes A2 and C1) and two haplotypes of LiuA1 and E1 belonged to Haplogroup A (Fig7). Also, two haplotypes of the studied iTABs (Haplotype A3 and A5) together with Liu F1 and Oka G1 are classified into haplogroup B. Similarly, haplotypes A4, C1, and A1 of the studied population belonged to haplogroup C together with Liu C1 haplotype.

Haplogroup D was shared by haplotypes of reference sequence from Liu and Oka; whereas haplogroup E contained only one haplotype (haplotype B) of the studied population together with Liu H1 and B1 and Oka F1 haplotypes. Among the five haplogroups identified in the studied populations, haplogroup A and C comprised mostly of the iTABs used in this study, which are found under A2 and A3 respectively.

The Media Joining Network profile in (Fig. 8), revealed a total of nine (9) haplotypes. The median joining network of iTABs populations clustered into five main clades presented in Figure 8. In this study, clade A, B and C are grouped as one (ABC), as there was no clear evidence of ancestral divergent. However, all the haplotypes of the iTABs populations (n=8; 100%) are in clade ABC whereas all other haplotypes of the reference sequence, were in clade D and E (grouped as DE).

Figure 7. Ancestral states were inferred using the Maximum Likelihood method and Kimura 2parameter model using MEGA 7.0 software. The analysis includes 8 haplotypes identified in 77 sequences of iTABs and 9 reference sequences from the most frequent haplotypes of the nine clades of Liu's network (Liu et al., 2006) and the three additional clades (D, G and F) of Oka et al. (2007).

Figure 8. Media joining netork profile of mtDNA D-loop haplotypes observed in the current study. The circle sizes correspond to haplotype frequency and the numbers on the line correspond to mutational positions connecting haplotypes. Red circles are median vectors used in connecting indirectly related haplotypes.

Discussion

Genetic Diversity of iTABs in Imo State

Genetic diversity plays a vital role in the survival and adaptability of species in a given population (Frankham, 2005). Increased population genetic diversity is highly correlated with increased population fitness; hence maintenance of genetic diversity is imperative for conservation. The average mtDNA variations among the six populations as revealed by the diversity indices (Table 3) of this study indicates an average number of closely related haplotypes, and suggest that this population may have undergone a recent expansion. This was evidenced by the overall Tajima's D and Fu's Fs tests which showed negative and not statistically significant among populations thus, is consistent with a population at drift-mutation equilibrium.

The negative non-significant value for Tajima's D observed among populations could suggest that, in the presence of balanced selection between/among these chicken breeds, the evidence for population expansion is not significant. This could be attributed to an excess of rare nucleotide site variants compared to what would be expected under a neutral model of evolution. Also, the negative and non-significant Fu's Fs statistical value observed among populations indicates no strong evidence for past population expansion, and signifies the possibility of genetic hitching and background selection, also, an evolutionary force that produces a pattern similar to population expansion (Fu and Li, 1993; Fu, 1997; Okello et al., 2005). Beneficial genetic variation will generally be accumulated and maintained in the presence of rapid growth of these populations similar to (Su et al., 2001).

The average haplotype diversity value (Table 3) among population was found similar to the Algerian chicken populations (0,597) (Boudali et al,2020) and higher than those of the African chicken populations of: Ethiopia 0.374, Sudanese 0.413 and Uganda 0.322 (Nwacharo et al., 2011); and Nigerian 0.421 (Adebambo et al., 2010). However, the values are lower than those of the African fowls of: Zimbabwe 0.730 (Muchadeyi et al., 2010) and Kenya 0.857 (Nwacharo et al., 2011).

Compared to the other iTABs, the highest number of polymorphic sites observed in Noiler reveals a higher amount of genetic variation within the population. This study also showed that Noiler had the highest number of shared haplotypes with other iTABs while FUNAAB Alpha and Kuroiler ranked second and third, respectively. This suggests that Noiler, FUNAAB Alpha and Kuroiler are more likely to have been developed from a common ancestor or could have shared ancient lineages. This is in line with the report of Torrini et al. (1993) and Ward et al. (1993) where older /more ancient populations tend to mutate longer and accumulate their mutations. Also, Research for development (2017) had it that FUNAAB Alpha chicken had undergone extensive research for improvement for more than 20 years. This result therefore indicates that Noiler, FUNAAB Alpha and Kuroiler breeds could be more genetically diverse with the haplotypes being shared with other populations. Haplotype shared observed in Shika Brown, Fulani and Sasso was very low, this suggests that these breeds must have undergone less mutational processes in their genome compared with the rest of the iTABs similar to (Stumpf, 2004).

The values of haplotype diversity obtained in this study within populations were similar to that of the Asian Vietnamese fowls (0.615 to 0.942) (Cuc et al., 2011). Therefore, these findings indicate that the mtDNA polymorphism within and among the iTAB populations raised in Imo State, Nigeria is on the average compared to most African chicken populations but similar to a few African chicken populations, and Asian chicken populations. The haplotype diversity δ is a more suitable parameter than nucleotide diversity to estimate genetic diversity in populations as it addresses the frequency of haplotypes and nucleotide differences between haplotypes. In this study, the high range of haplotype diversity observed within populations of FUNAAB Alpha, Kuroiler and Noiler indicates an existence of high molecular differences within these populations, thus suggesting that the FUNAAB Alpha, Kuroiler and Noiler are likely to have a high adaptation to environmental changes under natural selection (Steffen et al., 2008). The combination of high haplotype diversity and low nucleotide diversity, as observed in FUNAAB Alpha, Kuroiler and Noiler, can indicate a signature of a rapid demographic expansion from a small effective population size (Avise, 2000).

Genetic distance and AMOVA

Genetic distance reveals the degree of genetic differences between or within species in a population (Nei, 1987). When population has many identical alleles, the degree of genetic distance will be low and such populations are genetically more related with a common ancestor. This study revealed a high genetic distance between Kuroiler and FUNAAB Alpha and a low genetic distance between Fulani and Shika Brown. This result suggests that Fulani and Shika Brown could have been genetically bred from a common ancestor; whereas Kuroiler and FUNAAB Alpha must have had a recently divergent from a common ancestor hence they are less genetically related. Therefore, this result suggests the absence of significant genetic subdivision within Kuroiler and FUNAAB Alpha. It also implied that Kuroiler and FUNAAB Alpha has the capacity to thrive independently irrespective of the amount of gene exchange between them, as such, are more diversified than the rest of the iTABs.

Analysis of molecular variance (AMOVA) in this study revealed higher genetic variation within populations than among populations within groups which therefore suggests a high level of female mediated gene flow within population (Tserenbata et al., 2004). This implies that there is a higher maternal genetic variation within the iTAB populations. This is in contrast with Do et al. (2019) who reported higher variation among groups of Vietnamese Indigenous chicken.

Also, the positive but non-significant value for Tajima's D observed within population of Shika Brown and Fulani (Table 3) indicates that within these populations, there is a shred of evidence for high polymorphism under decreasing or low population size however; there is no significant evidence for population growth. This result is similar to the result reported by (Teinlek et al., 2018), and could be attributed to the high occurrence of balance selection on the present iTABs. On the contrary, the 3.43 percentage variation observed among groups indicates little or no populations. This result agrees with the report of Parieset et al. (2011) and indicates high maternal variations within the populations of iTAB in Imo State, Nigeria compared with that observed among groups.

Phylogenetic relationship of the iTABs in Imo State

The two main clusters identified among the populations as revealed by the phylogenetic tree, represent two ancient lineages from which the iTABs are derived. Though, this could be attributed to recent mutational event. Our finding agrees with Ohno (1997); therefore, owing to the effect of some evolutionary forces such as mutation, individuals of iTABs in both clusters were said to have shared an ancient lineage. However, due to some recent mutational events, they split into two lineages there by representing two distinct lineages from which the iTABs were derived. This, therefore, suggested that the present iTABs likely shared two common lineages originating from an ancient ancestor. Lineage I is the farthest lineage and contained only one individual of iTABs expressed in haplotype 4(A1); and is said to have maintained their ancient lineage. This result is in line with Revay et al. (2010), which therefore implies that over the years, this population probably could not have been affected by any evolutionary forces.

The five haplogroups that defined the two lineages of iTABs reveals the presence of five mitochondrial genomes among the populations. Although, some of these haplogroups had begun the process of establishing independent lineages, hence the various sub-lineages found in the tree.

The closeness of the clustering implied that mating might have occurred between lineages, thus agreeing with (Gongora et al., 2008). This is justified by the median joining network which showed the existence of two clear clusters separated by a limited number of mutational events; thus, having a recent lineage evolving with just one mutational event found in haplotype 3 (B). Therefore, we conclude that the two major clusters observed on the iTABs which centered mainly on haplotype 1 and 2, justifies the fact that the present iTABs could be derived from two common evolutionary lineages.

Maternal inheritance/origin of the Improved Tropically Adapted Chicken Breeds (iTABs)

The five haplogroups (A, B, C, D and E) identified in this study were well represented among the 14-haplogroup setting (A-J and W-Z) suggested by Miao et al. (2013). The iTABs were found under the haplogroup A, B, C and E. The two most frequently occurring haplogroups (A, and B) which contains the most frequent haplotypes (haplotype 1 and 2; represented as A3 and A2) (justified by the haplotype

distribution and the median joining network profile), were found to have shared an ancient common ancestor thus indicating the presence of a distinct clade for the studied populations. Haplogroup A and B were observed in East African Chicken population (Mwacharo et al., 2011), in South African chicken population (Mtileni et al., 2011) and in Zimbabwean village chicken population (Muchadeyi et al., 2008), but absent in other African countries. Haplogroup B distributes mainly in south central and southeast China, and southeast Asia (Miao et al., 2013).

Haplogroups C and E were also the prevailing haplogroups in the studied iTABs although in a very minor frequency. About 7.70% of the iTABs were found in haplogroup C thus indicating approximately 8% contribution of this haplogroup to the iTABs. Only 1% of the iTAB was found in haplogroup E thus indicating a very little or no considerable contribution of this haplogroup to iTABs. However, Liu et al. (2006) ; Miao et al. (2013) and Langford et al. (2013) suggested that haplogroup C has been widely distributed in East Asia, Southeast Asia and Pacific. The hplotypes of C observed in most of the iTABs were closely related to the represented haplotypes in South China, Vietnam, Laos, Sri Lanka and Japan. Haplogroup E is mainly distributed among Eurasian and South Asian domestic chickens (Liu et al., 2006 and Miao et al., 2013). The minute existence of iTABs in haplogroup E suggested no clear relationship of the iTABs with the South Asian domestic Chicken of (Liu et al., 2006 and Miao et al., 2013). The minute existence of its haplogroup A and B) observed in this study, with the South African Chicken of Mtileni et al. (2011). The result therefore suggests that the present iTABs were likely to be dominated by 2 maternal lineages defined in haplogroup A and B.

Haplogroup F-J and W–Z ⁽Maio et al., 2013), were not found in the iTABs examined in the present study, which suggests that these haplogroups are either specific to other regions in Asia, or were not included in the individuals examined in the present study simply by chance. The existence of the iTABs into a distinct clade (clade II) was well represented in the seven clades identified in Asian domestic chicken (Bjornstad et al., 2013), which confirmed the existence of a contribution of single maternal lineage in all of thm. A single clade was observed in Adebambo et al. (2010); Fumihito et al. (1994; 1996). In this study, the single clade observed suggests a closer history of domestication as well as the absence of admixture between the iTABs, and the West African village chicken and southwestern Nigerian indigenous chicken.

Therefore these distinct distribution patterns of iTABs suggest that the distinct clade is likely to be descended from two common ancestors, possibly of East African origin (Mwacharo et., 2011); South African origin (Mtileni et al., 2011); Zimbabwean origin (Muchadeyi et al., 2008); south central and southeast China, and southeast Asia (Miao et al., 2013).

The results of our study suggest the possibility that iTABs chickens, East African Chicken population (Mwacharo et., 2011), South African chicken population (Mtileni et al., 2011) and Zimbabwean village chicken population (Muchadeyi et al., 2008) harbor a variety of diverse genes that regulate traits beneficial to the poultry industry, such as those which improve egg and/or meat production and quality, environmental stress tolerance, and disease resistance. Our results of mtDNA D-loop sequences suggest that there are no major genetic differences between the iTABs and subspecies of East African, South African and Zimbabwean village chicken population. The results obtained could be affected by population histories due to their differences in the mode of inheritance and mutation rates; therefore, the estimation values of genetic diversity are not necessarily positively correlated between the mtDNA D-loop sequences. To this effect whole mitochondrial genome sequences will provide a more reliable phylogenetic tree than the D-loop sequences alone. In fact, Miao et al. (2013) mentioned that *D-loop* sequencing alone could not identify differences between haplogroups Therefore, further genome-wide genetic analysis for the iTABs could aid in clarifying the origins and genomic evolution of the ITABs and West African village chickens which, in turn, would contribute to the conservation of these invaluable genetic resources.

Conclusion

The present findings identified average mtDNA variation resulting from an average mtDNA polymorphism within the population. This revealed average molecular differences within the iTABs that could result in average adaptation to environmental changes under natural selection. The total genetic variability (87.89%) clearly displayed within the iTABs population gives the indication of an average

to high level of mtDNA polymorphism. These observations are important for the process of adaptation giving the impression that these iTABs population can gradually adapt to the specific conditions in which they live. The high genetic diversity within the population could be utilized for further genetic improvement of the breeds. This result could also guide in the conservation of the local germplasm within and among these iTABs. The conservation program can utilize the ability of different genotypes to match the different environments. This would, in turn, results in sustainable utilization of the chicken products without the need to concentrate on guessing which breeds to cross for improvement on production.

Among the six populations of iTABs, Fulani and Shika Brown were more closely related and hence are not genetically differentiated. Artificial selection of the present iTABs, could be the possible cause of average genetic differentiation observed among the "slightly differentiated" populations. The result obtained in this study, also implied that Kuroiler and FUNAAB Alpha has the capacity to thrive independently irrespective of the amount of gene exchange between them, as such, are more diversified than the rest of the iTABs.

The study shows that the iTABs could have originated from two distinct maternal lineages belonging to clade A and B and are likely to be descended from two common ancestors, possibly of East African origin; South African origin; Zimbabwean origin; south central and southeast China, as well southeast Asia. Our results of mtDNA D-loop sequences suggest that there are no major genetic differences between the iTABs and subspecies of East African, South African and Zimbabwean village chicken population. The results obtained could be affected by population histories due to their differences in the mode of inheritance and mutation rates; therefore, the estimation values of genetic diversity are not necessarily positively correlated between the mtDNA D-loop sequences. To this effect whole mitochondrial genome sequences will provide a more reliable phylogenetic tree than the D-loop sequences alone.

Acknowledgement

This project was supported by the postgraduate fellowship grant of the African Chicken Genetic Gains project in Nigeria. The ACGG is an International Livestock Research Institute (ILRI) led project sponsored by the Bill and Melinda Gates Foundation (Grant Agreement OPP1112198). We are grateful to the ACGG Nigeria project management team

Funding Information

The authors should acknowledge the funders of this manuscript and provide all necessary funding information.

Author's Contributions

Okani-Onyejiaka designed and carried out the project and wrote the manuscript. **Boudali** revised the manuscript and corrected the results. **Ogundu**, **Oladeji**, **Ogbuewu** and **Aladi** contributed each to the paper write-up at different levels; **Ogundu and Ogbuewu** supervised the project, **Oladeji** supervised and directed the paper write-up while Aladi Proof-read the paper at different times. All authors discussed the results and contributed to the final manuscript.

References

- **Abdel-Basset ME. Fayza MA. Adel-Almaaty AH Mohammed A 2014.** Assessment of genetic variation and changes in protein subunits induced by petroleum oil in three species of red sea fishes using SDS-PAGE and ISSRs markers. Journal of pharmacy and biological sciences, 9165:16-22. DOI: 10.9790/3008-09621622.
- Adebambo OA. Mwacharo JM. Oladejo BM. Adewale RA. Ilori L 2010. Lack of phylogenetic structure in Nigerian village chickens revealed by mitochondrialDNA D-loop sequence analysis. International Journal of Poultry Science 9(5): 503-507. DOI: 10.3923/ijps.2010.503.507.
- Adebambo O. Adebambo A. Adeleke M. Adeleye A. Adetunji A. Ajayi F. Akinola W. Alabi O.Bamidele O. Dessie T. Ikeobi C. Ogundu U. Ojoawo H. Osinbowale D. Ozoje M. Peters S. Sonaiya B. Wheto M. Yakubu A 2018. Genetic Conservation through effective utilization of the

improved indigenous Chicken breeds by rural households in Nigeria. Tropical animal health and production, 52(1), 95-107.https://hdl.handle.net/10568/98516.

- Alabi OO. Ajayi FO. Bamidele O. Yakubu A. OgunduEU. Sonaiya EB. Ojo MA. Hassan WA. Adebambo OA 2020. Impact assessment of improved chicken genetics on livelihoods and food security of smallholder poultry farmers in Nigeria. Livestock Research for Rural Development 32(77): DOI:10.1080/23311932.2018.1477231.
- Avise JC. 2004. Molecular markers, natural history, and evolution. 2nd Edition. Sinauer ssociates, Inc. Publishers, Sunderland, Massachusetts. P-541. DOI: 10.1007/978-1-4615-2381-9.
- **Bamidele O. Sonaiya EB. Adebambo OA. Dessie T 2020.** On-station performance evaluation of improved tropically adapted chicken breeds for smallholder poultry production system In Nigeria. Tropical Animal Health Production 52: 1541–1548. DOI: 10.1007/s11250-019-02158-9.
- Bamshad MJ. Wooding S. Watkins WS. Ostler CT. Batzer MA. Jorde LB 2003. Human population genetic structure and inference of group membership. Am J Hum Genet, 72: 578–589. DOI: 10.1086/368061.
- **Bjørnstad ON. Tobin PC. Robinet C. Johnson DM. Whitmire SL. Liebhold AM 2009.** The role of Allele effects in gypsy moth, Lymantria dispar (L.), invasions. Population Ecology 51:373-384. DOI: 10.1007/s10144-009-0144-6.
- Boudali SF. Al-Jumaili AS. Bouandas A. Mahammi FZ. Tabet Aoul N. Hanotte O. Gaouar SBS 2020. Maternal origin and genetic diversity of Algerian domestic chicken (*Gallus gallus domesticus*) from North-Western Africa based on mitochondrial DNA analysis. Animal Biotechnology, 1-11. DOI: 10.1080/10495398.2020.1803892.
- **Brown WM. Prager EM. Wang A. Wilson AC 1982.** Mitochondrial DNA sequences of primers: tempo and mode of evolution. Journal of molecular evolution 18(4): 225-239. DOI: 10.1007/bf01734101.
- Bruford MW. Bradley DG. Luikart G. 2003. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 4:900–910. DOI: 10.1038/nrg1203.
- Crawford R.D. (1990). Origin and history of poultry species. In: Poultry Breeding and Genetics, No. 04; SF492, C7.). DOI: 10.5962/bhl.title.24836.
- Cuc NTK. Simianer H. Eding H. Tieu HV. Cuong VC. Wollny BA. Groeneveld LF. Weigend S 2011. Assessing genetic diversity of Vietnamese local chicken breeds using microsatellites. Animal Genetics 41:545-547. DOI: 10.1111/j.1365-2052.2010.02039.x.
- Darwin CR. 1868. The Variation of Animals and Plants under Domestication. *John Murray, London*. First edn, First issue. 2:1-18. DOI: 10.5962/bhl.title.46249.
- **Do SQ. Nguyen LTP. Nguyen TH. Nguyen, TQ 2019.** Genomic characterization of three Vietnamese indigenous chicken varieties using mitochondrial D-loop sequences. Canadian Journal of Animal Science, 99(4), 833-839. DOI: 10.1139/cjas-2019-0025.
- **Excoffier L. Smouse PE. Quattro JM 1992.** Analysis of molecular variance inferred from metric distances amongDNA haplotypes application to human mitochondrial DNA restriction data.Genetics 131:479-491. DOI: 10.1093/genetics/131.2.479.
- **Excoffier L. Laval G. Schneider S. 2006.** Arlequin Version 3.01, An Integrated Software Package for Population Genetics, Data Analysis Computational and Molecular Population Genetics Lab, Geneva, Switzerland. DOI: 10.1177/117693430500100003.
- **Excoffier L. Lischer H. 2015.** Arlequin ver.3.5. 2, An integrated software package for population genetics data analysis, Institute of Ecology and Evolution, University of Berne, Switzerland. DOI: 10.1111/j.1755-0998.2010. 02847.x
- Frankham R.2005. "Genetics and Extinction" Biological Conservation, 126 (2): 131-140. DOI: 10.1515/9780691224039-004.
- **Fumihito A. Miyake T. Takada M. Shingu R. Endo T. Gojobori T. Kondo N. Ohno S. 1996.** Monophyletic origin and unique dispersal patterns of domestic fowls. Proceedings of theNational Academy of Sciences of the United States of America, 93:6792–5. DOI: 10.1073/pnas.93.13.6792.
- **Fu YX. 1997.** Statistical tests of neutrality of mutations against population growth, hitch hiking and background selection. *Genetics*,147:915–925. DOI: 10.1093/genetics/147.2.915.
- Galtier N. Duret L. Glemin S. Ranwez V. 2009. GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet. 25, 1–5. DOI: 10.1016/j.tig.2008.10.011.

- Gongora J. Rawlence NJ. Mobegi VA. Jianlin H. Alcalde JA. Matus JT. Cooper A. 2008. Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proceedings of the National Academy of Sciences, 105(30), 10308-10313. DOI: 10.1073/pnas.0801991105.
- Geospiza Research Team. 2004. Finch TV version 1.4.0 for windows. Available at: www.geospiza.com/finchtv.
- Guan MX. Fischel-Ghodsian N Attardi G. 2012. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet. 10:573–580. DOI: 10.1093/hmg/10.6.573.
- Komiyama T. Ujike H. Harano M. Inada T. Yamada M. Sekine Y. Nakata K. 2003. Nine-or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong riskfactor for prolonged Methamphetamine psychosis. The pharmacogenomics journal 3(4):242. DOI: 10.1038/sj.tpj.6500189.
- Kumar S. Stecher G. Li M. Knyaz C. Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096.
- Laga V. Loukovitis D. Siasiou A. Mitsopoulos I. Lymberopoulos AG. Chatziplis D 2018. Genetic diversity of Greek sheep breeds and trans-humant populations utilizing microsatellite markers. Small Ruminant Research, 136: 238-242. DOI: 10.1016/j.smallrumres.2016.02.008.
- Liu ZG. Lei CZ. Luo J. Ding C. Chen GH. Chang H. Wang KH. Liu XX. Zhang XY. Xiao XJ. Wu SL. 2004. Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Aust. Journal of Animal Science. 17: 903-909. DOI: 10.5713/ajas.2004.903.
- Liu YP. Wu GS. Yao YG. Miao YW. Luikart G. Baig M. Beja- Pereira A.Ding ZL. Palanichamy MG. Zhang P. 2006. Multiple maternal origins of chickens out of the Asianjungles. Molecular Phylogenetics and Evolution 38: 12–19. DOI: 10.1016/j.ympev.2005.09.014.
- Mahendra KP. 2015. Importance of indigenous breeds of chicken for the economy and their input for higher production performance. Regional centre, *Central avian research Institute* (ICAR), Baramunda, Bhubane swas 75:1003. https://doi.org/10.1155/2016/2604685.
- Mwacharo JM. Bjørnstad G. Mobegi V. Nomura K. Hanada H. Amano T 2010. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution. 58(2), 374-382. DOI: 10.1016/j.ympev.2010.11.027.
- Mwacharo JM. Bjørnstad G. Mobegi V. Nomura K. Hanada H. Amano T. Jianlin Hanotte O. 2011. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Journal of Moleculatr Phylogenetic Evolution 58: 374-382. DOI: 0.1016/j.ympev.2010.11.027.
- Miao YW. Peng MS. Wu GS. Ouyang YN. Yang ZY. Yu N. Liang JP. Pianchou G. Beja-Pereira
 A. Mitra B. Palanichamy MG. Baig M. Chaudhuri TK. Shen YY. Kong QP. Murphy RW.
 Yao YG. Zhang YP. 2013. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110: 277-282. DOI: 10.1038/hdy.2012.83.
- **Mobegi VA. Kovana M. Nwakanma DC. 2005.** Mitochondrial DNA D-loop sequences reveal the genetic diversity of African chicken. Proceedings of the 4thAll Africa Conference on Animal Agriculture.Sept. 20-24 Arusha,Tanzania, Pp:293-298. (Google Scholar).
- **Mobegi VA.** Chicken Diversity Consortium 2006. Mitochondrial DNA D-loop sequences reveal the genetic diversity of African chicken. In the role of Biotechnology in Animal Agriculture to address poverty in Africa: opportunities and challenges. In: Rege JEO. Nyamu AM. Sanbalo V. (eds) ILRI Publication, Nairobi, Pp. 293-298. (Google Scholar).
- Mtileni BJ. Muchadeyi FC. Mairoashe A. Groeneveld E. Groenevdd LF. Dzaina K. Weigend S. 2011. Genetic diversity and conservation of South African indigenous chicken populations. J. Anim. Breed. Genet. 128:209-218. DOI: 0.1111/j.1439-0388.2010.00891.x
- Muchadeyi F. Eding H. Simianer H. Wollny CBA. Groeneveld E. Weigend S. 2008. Mitochondrial DNA D-loop sequences suggest a Southeast-Asian and Indian origin of Zimbabwean village chickens. *Animal Genetics* 39:615–622. DOI:10.1111/j.1365-2052.2008. 01785.x.
- Nei M. 1987. Molecular evolutionary genetics. Molecular Biology and Evolution, New York, Columbia University Press. Volume 4, Issue 4, Jul 1987, Pp: 406–425 https://doi.org/10.7312/nei-92038.
- Nijman IJ. Otsen M. Verkaar ELC. Ruijter C. Hanekamp E. Ochieng JW. Shamshad S. Rege JEO. Hanotte O. Barwegen MW. Sulawati T. Lenstra JA 2003. Hybridization of banteng (*Bos*

javanicus) and zebus (*Bos indicus*) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity, 90: 10-16. DOI: 10.1038/sj.hdy.6800174.

- Nishibori M. Shimogiri T. Hayashi T. Yasue H 2005. Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Animal Genetics, 36: 367–75. DOI: 10.1111/j.1365-2052.2005.01318.x.
- Niu D. Fu Y. Luo J. Ruan H. Yu XP. Chen G. Zhang YP 2002. The origin and genetic diversity of Chinese native chicken breeds. Biochem Genet. 40(5/6):163-174. https://doi.org/10.1093/ps/81.10.1463.
- **Ohno S. 1997.** The one ancestor per generation rule and three other rules of mitochondrial inheritance. Proc. Natl. Acad. Sci. USA. 94 :8033-8035. https://doi.org/10.1073/pnas.94.15.8033 .
- **Oka T. Ino Y. Nomura K 2007.** Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Animal Genetics 38: 287–93. DOI: 10.1111/j.1365-2052.2007.01604. x.
- **Okorie FC. 2015.** Analysis of 30 years rainfall variability in Imo State of southeastern Nigeria. Proceedings of the International Association of Hydrological Sciences, 366, 131-132. DOI: 10.5194/piahs-366-131-2015.
- Pariset L. Mariotti M. Gargani M. Joost S. Negrini R. Perez T. Bruford M. MarsanPA. Valentini A 2011. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). The Scientific World Journal 11:1641– 1659. DOI: 10.1100/2011/186342.
- **Revay T. Bodzsar N. Mobegi VE. Hanotte O. Hidas A 2010.** Origin of Hungarian indigenous chicken breeds inferred from mitochondrial DNA D-loop sequences. Animal Genetics. 41:548–50. DOI: 10.1111/j.1365-2052.2010.02041. x.
- **Research for Development 2017.** Effect of varying levels of dietary energy and protein on reproductive performance of FUNAAB-alpha hens. In: Saleh B. Mbap ST. Kalla, D JU. Doma UD. Duwa H. (eds) Livestock Research for Rural Development, 29: 3. DOI: 10.51791/njap. v44i2.1023.
- Rozas J. Ferrer-Mata A. Sánchez-DelBarrio JC. Guirao-Rico S. Librado P. Ramos-Onsins SE. Sánchez-Gracia A 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302. DOI: 10.1093/molbev/msx248.
- Saccone C. Lanave C. Preparata G 1990. Mammalian genes as molecular clocks? Journal of molecular evolution 21(4):346-350. DOI: 10.1007/bf02115653.
- **Sonaiya EB. Branckaert RDS. Gueye EF. 1999.** Research and development options for family poultry. In First INFPD/FAO electronic Conference on family poultry. Rome: FAO. DOI: 10.1017/s0043933907001353.
- **Sonaiya F. 2014a.** Feeds and feeding. In: Decision tools for family poultry development. FAO Animal Production and Health Guidelines No. 16. Rome, Italy. Pp.26-28. DOI: 10.1016/j.gfs.2017.04.003.
- **Sonaiya F. 2014b.** Identifying appropriate interventions. In: Decision tools for family poultry development. FAO Animal Production and Health Guidelines No. 16. Rome, Italy.Pp. 28 30. DOI: 10.1016/j.gfs.2017.04.003.
- Smith J. Sones K. Grace D. MacMillan S. Tarawali S. Herrero M. 2013. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Animal Frontiers, 3(1), 6-13. DOI: 10.2527/af.2013-0002.
- Steffen W. Sanderson A. Tyson PD. Jager J. Matson PM. Moore B. Oldfield F. Richardson K.Schnellnhuber HJ. Turner BL. Wasson RJ. 2008. Globalchange and the Earth system:A planet under pressure. Springer-Verlag, New York,USA. Pp 336. DOI: 10.1007/3-540-26607-0_3.
- Su AI. Welsh JB. Sapinoso LM. Kern SG. Dimitrov P. Lapp H. Hampton GM 2002. Molecular classification of human carcinomas by use of gene expression signatures. *Cancer research*, *61*(20), 7388-7393. DOI: 10.1016/s0959-8049(02)80401-4.
- Stumpf DL. 2004. Haplotype diversity and SNP frequency dependence in the description of genetic variation. European Journal of Human Genetics 12: 469-477. DOI: 10.1038/sj.ejhg.5201179.
- Sunnucks P. 2011. Efficient genetic markers for population biological Trends. Ecol Evol 15:199-203. DOI: 10.1016/s0169-5347(00)01825-5.
- **Teinlek P. Siripattarapravat K. Tirawattanawanich C 2018.** Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australasian journal of animal sciences, *31*(6), 804. DOI: 10.5713/ajas.17.0611.

- **Tobias JA. 2003.** Notes on breeding behavior in Black-faced Cotinga *Conioptilonmcil hennyi. Cotinga* 19: 80–81. 3). DOI: 10.1676/02-074.
- **Tobias JA. Nelson PT. Baldwin DA. Scearce LM. Oberholtzer JC. Mourelatos Z 2004.** Micro arraybased, high-throughput gene expression profiling of microRNAs. Nature methods,1:(2),155. DOI: 10.1038/nmeth717.
- **Tobias C. Twigg P. Hayden D. Vogel K. Mitchell R. Lazo G 2005.** Analysis of expressed sequence tags and the identification of associated short tandem repeats in switch grass. Theor. Appl. Genet.111:956–964. DOI: 10.1007/s00122-005-0030-3.
- **Tobias CM. Hayden DM. Twigg P. Sarath G 2006.** Genetic microsatellite markers derived from EST sequences of switch grass (Panicum virgatum L.). Mol. Ecol. 6 :185–187. DOI : 10.1111/j.1471-8286.2006.01187. x.
- Tobias R. Atkinson A. Donev A. 2007. Optimum experimental designs, with SAS (Vol. 34). Oxford University Press. DOI: 10.1080/00401706.1993.10485359.
- Torroni A. Shurr TG. Cabell MF 1993. Asian affinities and continental radiation of the four founding Native American mtDNA. Ani. J. Hum. Genet. 53:563-590. DOI: 10.1515/9781400821068.166.
- **Tserenbataa T. Ramey RR. Ryder OA. Quinn TW. Reading RP 2004.** A population genetic comparison of argali sheep (*Ovisammon*) in Mongoliausingthe ND5 gene of mito chondrial DNA: implications for conservation. Mol. Ecol. 13:1333–1339. DOI: 10.1111/j.1365 294x.2004.02123.x.
- Wethli E. 2003. Improving the productivity of indigenous chickens in rural villages. In Proceedings of 1st National Workshop on indigenous poultry development. Pietermaritzburg, South Africa–29-30 October. Pp: 120-126. DOI: 10.1080/00071660410001715911.
- Wright S. Pickton D. 1998. What's swot in strategic analysis? *Strategic change* 7(2): 101-109. DOI: /10.1002/ (sici) 1099-1697(199803/04)7:2<101::aid-jsc332>3.0.co;2-6
- Ward RH. Redd AJ. Valencia D. 1993. Genetic and linguistic differentiation in Americas. Proc. Natl. Acad. Sci. USA. 90:10663-10667. DOI: 10.1073/pnas. 90.22.10663 .
- West B. Zhou BX. (1988). Did chickens go north? New evidence for domestication. Journal of archaeological science, 15(5),515-533. DOI: 10.1016/0305-4403(88)90080-5.
- Yakubu A. Bamidele O. Hassan WA. Ajayi FO. Ogundu UE. Alabi O. Sonaiya EB. Adebambo AO. 2019. Farmers' Choice of genotypes and traits preferences in tropically adapted Chickens in five agro-ecologicalzones in Nigeria. Tropical Animal Health and production. DOI: 10.1007/s11250-019-01993-0.