
© 2023 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

Review Article 

Major Histocompatibility Complex (MHC) Diversity and its implications for 

human and wildlife health and Conservation – A review 

Oluwakayode Michael COKER1*, Osamede Henry OSAIYUWU2, Abraham Oladiran 

FATOKI2 

1Department of Wildlife and Ecotourism Management, University of Ibadan, Nigeria 
2Department of Animal Science, University of Ibadan, Nigeria  

* Corresponding author: Oluwakayode Michael Coker, University of Ibadan, Nigeria +2348054150061, 

liftingup2003@gmail.com 

Article history: Received: September 28th 2022; Revised: May 22nd 2023; Accepted: June 11th 2023 

Abstract 

It is clear that the global environment has changed and is still changing. The results of climate change, pollution, 

human use, and misuse of natural resources are tolling on humans and global biodiversity. The appropriate response(s) 

to these changes can be attributed to the efficacy of the immune system. The Major Histocompatibility Complex 

(MHC) has a key role in maintaining global biodiversity in the face of obvious threats. Genetic variation, especially 

those within MHC proteins has been known to influence the ability of individuals to cope with various pathogens. In 

this review, we reveal from empirical research, the diversities within the MHC in wildlife, highlight the importance 

of MHC to wildlife and human health, emphasize the need to conserve MHC diversity for adequate conservation, and 

open a discussion on whether the interplay between the MHC genes and disease resistance is a question of quantity or 

quality. For most jawed vertebrates, classical MHC genes are the most gene-dense and polymorphic. This 

polymorphism in the MHC genes can be explained by host-pathogen coevolution and provides an excellent tool for 

determining a population's or species' immunological fitness. Their variation is undoubtedly adaptively important, and 

there is strong evidence that pathogen-imposed balancing selection is the primary cause of its maintenance. Over the 

years, variants in the MHC have been reported as major risk factors for autoimmune and infectious diseases in humans 

and wildlife species of conservation concern. It has been observed that, though high diversity within the MHC proffers 

some protection for most natural populations, this seems not to be universal. The influence of this high diversity on 

the survival of natural populations should be further investigated. As the debate lingers, there is a dire need to protect 

the present diversity at the locus. This will definitely play a very important role in maintaining the health of both 

humans and animals and ensuring the conservation of biodiversity in response to the inevitable changes in our world. 
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Introduction 

Selective processes require genetic diversity as a starting point. Populations with high levels of diversity 

are better able to respond to threats like pathogens and predators, as well as long-term effects like 

environmental change (Wang, 2017). Low genetic diversity, on the other hand, may hinder a population's 

ability to respond to these threats over time (Hedrick, 2002). Genetic diversity measures are frequently 

based on neutral markers, e.g., microsatellites (Sommer, 2005), while adaptive markers, such as genes of 

the major histocompatibility complex (MHC), are better reflected by genetic diversity to capture 

information about population conservation (Holderegger et al., 2006; De Bruyn, 2007; Piertney and 

Webster, 2010).  

It is crystal clear that the global environment has changed and is still changing. The results of climate 

change, pollution, human use, and misuse of natural resources are tolling on humans and global 

biodiversity. The appropriate response(s) to these changes can be attributed to the immune system’s 

efficacy. Diversity within the Major Histocompatibility Complex (MHC) has a key role in maintaining 
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global biodiversity in the face of the obvious threats they face. Genetic variation, especially those within 

MHC proteins has been known to influence the ability of individuals to cope with various pathogens ( 

Castillo et al., 2010; de Groot et al., 2017). 

Though previous studies of MHC diversity have primarily focused on the allelic level (Hedrick, 2003; 

Kalbe et al., 2009; Thoss et al., 2011), the distinguishing feature of classical MHC genes is their extreme 

polymorphism (Piertney and Oliver, 2006; Schwensow et al., 2007). As revealed by the high relative 

nonsynonymous substitution rate inside the peptide-binding domain (PBD) (Hughes et al., 1990), notably 

at peptide binding sites (PBS) (Reche and Reinhertz, 2003) as well as large short-term selection coefficients, 

polymorphism evolves adaptively (Schwensow et al., 2007; Biedrzycka and Radwan, 2008). MHC 

genes are useful for investigating how selection might produce and sustain genetic variation in natural 

populations because of their high polymorphism and evidence of positive selection (Radwan et al., 2020). 

Given MHC's key function in the immune system of vertebrates, pathogen-driven selection may be more 

viable to decipher the high MHC diversity (Ziegler et al., 2005) seen in most vertebrates. Because of gene 

duplication, recombination, and conversion, alleles from different MHC loci, particularly in birds and 

reptiles, can be very similar and even identical to each other (Burri et al., 2010; Gaigher et al., 2016), and 

gene copy numbers can also vary between individuals (Gaigher et al., 2016; Tsuji et al., 2017). MHC genes 

are often duplicated in fish, reptiles, birds, and mammals, with 1–9 copies and 1–1,400 alleles per gene 

(Babik et al., 2005; Huchard et al., 2006; Castro-Prieto et al., 2011). Apart from the challenges posed by 

duplications and allelic variation, genotyping adequate sample sizes in a population for MHC-related 

studies can be time-consuming and costly.  

In addition, human MHC differs significantly from other animals in terms of the quantity and organization 

of genes and are thought to have experienced large-scale duplication events, leaving paralogous sets of 

genes on chromosomes 1, 9, and 19. MHC class I is found in all mammals, however, a lack of orthology 

suggests several rounds of gene duplication and loss during evolution (Yamaguchi and Dijkstra, 2019). 

Furthermore, balancing selection on MHC genes has revealed a pattern of trans-species polymorphism, 

which has resulted in the maintenance of MHC allelic lineages among related species for prolonged periods. 

Some vertebrate species have been found to have low MHC variation in wild populations that have 

experienced population reduction in the past (Castillo et al., 2010; Castro-Prieto et al., 2011; Niskanen et 

al., 2014; Kohyama et al., 2015), making them vulnerable to pathogens and increasing the risk of extinction 

(Niskanen et al., 2014). However, inbred populations have minimal MHC variation, leading to reduced 

parasite resistance (Radwan et al., 2010). Characterization of MHC genes is important in measuring the 

health of natural populations, which in no small way contributes to biodiversity conservation (Ujvari and 

Belov, 2011; de Groot et al., 2017). This review, therefore, explores the diversities within the MHC in 

wildlife, highlights the importance of MHC to wildlife and human health, emphasizes the need to 

protect/conserve MHC diversity in wildlife for adequate conservation, and opened a discussion on whether 

the diversity within the MHC genes and disease resistance is a question of quantity or quality. 

Genetics of MHC 

The MHC is a large gene cluster in the vertebrate genome that codes for cell surface proteins, 

which are utilized by the immune system. In vertebrates, MHC is vital for reacting to antigens and 

initiating an immune response. The bulk of the research that has addressed immune genes in wild 

populations has concentrated mainly on the MHC genes as a single family, which is a crucial 

component of adaptive immunity (Morris et al., 2015). MHC diversity has been related to a 

range of fitness features, including parasite resistance, survival, and reproductive success, which 

all have implications for population viability (Sommer, 2005; Ujvari and Belov 2011; Manlik et 

al., 2019).  

The MHC is a multi-gene family in birds and mammals that consists of two tightly linked 

subclasses that play a key role in the initiation of the immune response (Yamaguchi and Dijkstra, 
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2019). It spans 4 million base pairs and is traditionally divided into three regions: class I, class II, 

and class III, or the inflammatory region (Sommer, 2005). MHC, also known as human leukocyte 

antigen (HLA), is the most polymorphic gene cluster in the human genome, with more than 200 

genes encoding various aspects of the immunological response mechanism. It is located on the 

short arm of chromosome 6 and consists of about 4,000 kilobases of DNA covering about 2.5 map 

units (Ujvari and Belov, 2011).  

The MHC complex is one of the most diverse in the vertebrate genome. Most of its diversity is 

concentrated in the functionally essential peptide binding region (PBR), which binds peptides and 

exposes them to T-cells, triggering the required immunological response (Piertney and Oliver, 

2006). MHC genes code for proteins that identify "self" peptides from "non-self" peptides 

(Piertney and Oliver, 2006). Individuals express only a small number of distinct MHC molecules, 

in contrast to the huge population diversity of MHC molecules. This is thought to be a trade-off 

between enhancing the detection of foreign antigens and limiting the loss of T cell clones during 

thymus self-tolerance induction. Immune recognition, vulnerability to viral and autoimmune 

disorders, kin recognition, individual odors, mating preferences, and pregnancy outcome are all 

influenced by MHC variations (Sommer, 2005).  

For most jawed vertebrates, classical MHC genes are the most diverse genes (Hughes and Hughes, 

1995), and are scattered throughout a large genomic region with varying levels of recombination 

with other genes (Radwan et al., 2020).  

MHC and human health 

The MHC-encoded glycoproteins in humans are known as human leukocyte antigen (HLA) and the best-

characterized function of MHC-encoded molecules is the presentation of antigenic peptides to T cell 

receptors (TCR) on cognate T-cells (Tsai and Santamaria, 2013). The MHC genes are the most variable in 

the human genome, and the function of HLA molecules is to present peptides from invasive organisms 

(Robinson et al., 2015). The HLA molecules are slightly different from each other in their amino acid 

sequences leading to different structures in the peptide-binding cleft (Mosaad, 2015). In an immune 

response, T cells become activated upon interacting with the foreign antigen/HLA complex (Bose et al., 

2013). Upon activation, the immune response is elicited as a result of the interaction between the cytokines 

release and the T cells, and this will lead to the recognition and destruction of cells with the same foreign 

antigen/HLA complex when next encountered (Mosaad, 2015). HLA Class I and HLA Class II antigens 

behave differently in this process in terms of their precise mechanism of action. By their existence on all 

nucleated cells, HLA Class I molecules present antigens that are peptides generated by invading viruses. 

These are delivered to CD8 T lymphocytes (Tsai and Santamaria, 2013), which will then kill the infected 

cell immediately.  

Over time, the largest number of connections between human disease and the MHC region of the genome 

have been documented. However, the significance of MHC genes extends beyond immunological disorders 

as it also affects other infectious diseases (Howell, 2013). The MHC shows associations with most 

autoimmune diseases as well as many inflammatory and infectious diseases [such as Hodgkin’s lymphoma 

(Amiel, 1967), Acute lymphocytic leukaemia (Walford et al., 1970), Ankylosing spondylitis (Brewerton et 

al., 1973), Psoriasis (Zhou and Zhang, 2018), Myasthenia gravis (Hjelmström and Sanjeevi, 2000), Malaria 

(Riley et al., 1992), Dengue shock syndrome (Khor et al., 2011), Sialidosis (Milner et al., 1997), 

Complement deficiencies (Truedsson et al., 1993), Congenital adrenal hyperplasia (Fleischnick et al., 

1983), Sarcoidosis (Judson, 2018), Type 1 diabetes (Morran et al., 2015), Rheumatoid arthritis (Newton et 

al., 2004), Systemic lupus erythematosus (Fernando et al., 2007; Fernando et al., 2012), Multiple sclerosis 

(Ramagopalan et al., 2009), Pemphigus vulgaris (Delgado et al., 1996), Leprosy (Gorodezky et al., 2004), 

Narcolepsy (De la Herrán-Arita and García-García, 2014), Ulcerative colitis (Zhang et al., 2019),  Graves’ 

disease (Chu et al., 2018), Celiac disease (Gutierrez-Achury et al., 2015),  Selective IgA deficiency (Wang 
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et al., 2011), Bare lymphocyte syndrome (Reith and Mach, 2001), and  Juvenile myoclonic epilepsy (Wong 

et al., 2001)].  

Importance of MHC on animals  

A good number of natural populations are threatened by a sharp decline in the total amount of habitat that 

is available, and also by an increase in habitat fragmentation and degradation. These cause populations to 

shrink in size and restrict gene flow among subpopulations. (Peacock and Smith, 1997). Understanding the 

mechanisms that influence genetic variation and differentiation in endangered species is critical for 

evolutionary processes and conservation efforts (Sommer, 2005; Piertney and Oliver, 2006). The MHC 

genes, because of their characteristic polymorphism and their association with fitness, have become a 

valuable adaptive marker (Lan et al., 2019). MHC is a genetic system that can be used to examine disease 

dynamics in animals (Janeway et al., 2001). MHC research has focused on wildlife species that have 

witnessed population reduction due to diseases and human activities e.g., common frog (Rana temporaria) 

(Zeisset and Beebee, 2009), Eurasian beaver (Castor fiber) (Babik et al., 2005), lemur (Microcebus 

murinus) (Averdam et al., 2011), chacma baboon (Papio ursinus) (Huchard et al., 2006), sea lion (Zalophus 

californianus) (Bowen et al., 2004), giant panda (Ailuropoda melanoleuca) (Zeng et al., 2007), raccoon 

(Procyon lotor) (Castillo et al., 2010), cheetah (Acinonyx jubatus) (Castro-Prieto, 2011), European mink 

(Mustela lutreola) (Becker et al., 2009), and red-crowed crane (Grus japonensis) (Akiyama et al., 2017). 

Studying MHC variation in these species has widened our understanding of the immune response of host 

species to pathogens. On endangered species, MHC markers have been utilized (Miller et al., 2010; Mason 

et al., 2011). Individual variation in parasite load (Madsen and Ujvari, 2006; Schwensow et al., 2007), local 

adaptations (Evans et al., 2009), maternal-fetal interactions (Hedrick and Thomson, 1988), and lifetime 

reproductive success (Kalbe et al., 2009) are associated with MHC genes, making them useful molecular 

markers for assessing the status of endangered wildlife populations when conducting conservation 

programs.   

Comparison between Wildlife and human MHC as it relates to their health 

Nonhuman primate MHCs are identical to human MHCs, even though they contain a distinct number of 

MHC class I chain-related (MIC) genes (Dadi et al., 2015). The MIC has a structure that is comparable to 

that of classical MHC class I molecules. MIC proteins are made up of six exons that code for one 

transmembrane, one cytoplasmic, and three external (α1–3) domains (Jinushi et al., 2008).  

The MIC in humans is expressed in a variety of immune cells as well as most epithelial tissues. Only freshly 

isolated endothelium cells, fibroblasts, and gastric epithelium were found to express MIC on the cell 

surface. When triggered with cellular stress inducers, however, reports showed up-regulation of MIC 

transcripts and cell surface protein expression in various cell lines (Molinero et al., 2002). Unlike humans, 

chimpanzees contain a single fused MICA/MICB gene, and MIC genes in less closely related primates may 

not be orthologous and are duplicated. Only MICA and MICB, both centromeric to HLA-B, are functioning 

MIC genes in humans (Al Hadra et al., 2022).  

The MIC genes' relevance has been highlighted by their role in a variety of human diseases. Several 

researchers have found plausible links between MHC genes and diseases. For instance, Cohen et al. (2002) 

found a substantial link between particular MICA alleles and autoimmune illnesses like Behçet's disease. 

The MICA alleles have also been linked to resistance and susceptibility to human brucellosis (Bravo et al., 

2007). Therefore, understanding the links among genetic diversities, immune resistance and susceptibility 

to pathogenic diseases, requires research into the diversity and evolution of MHC genes (Dadi et al., 2015). 

Diversity within the MHC genes and disease resistance: A question of quantity or quality? 

As intellectually appealing as the principles explaining MHC polymorphism and disease resistance is, the 

majority of the empirical data came from investigations involving humans or in animal experiments 
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(Froeschke and Sommer, 2005) and very few cases of associations between particular MHC alleles and 

parasite resistance have been reported in natural populations (Kelly and Trowsdale, 2017). However, the 

primary use of MHC genes in conservation has been to quantify the genetic diversity of natural populations, 

with no specific conservation implications (Ujvari and Belov, 2011). MHC diversity is substantial in most 

natural populations, in terms of number of the alleles, sequence variation, and heterozygosity (Hedrick, 

2003). Characterization of polymorphic and polygenic MHC genes is thus a great indicator of genetic health 

and has applications in conservation biology, such as managing captive breeding programs for endangered 

species (De Groot et al., 2017).  

Natural populations usually reveal high diversity within their MHC. Allelic variations leading to high levels 

of heterozygosity are usually observed in the MHC of most natural populations (Hedrick, 2003), which 

tend to proffer protection against pathogens and diseases. But this seems not to be universal. For example, 

bottlenecked populations of, Scandinavian beavers (Castor fiber), fallow deer (Cervus dama), and Northern 

elephant seals (Mirounga angustirostris) show no indication of increased susceptibility to infectious 

diseases despite their low polymorphisms in MHC genes (Weber et al., 2004). Also, Castro-Prieto et al. 

(2011) concluded that the low level of MHC diversity in free-ranging cheetahs (Acinonyx jubatus), in 

Namibia does not influence their immune-competence. Whereas, bottlenecked populations of desert 

bighorn sheep (Ovis aries), which show high levels of MHC diversity are also highly susceptible to many 

infectious diseases (Gutierrez-Espeleta et al., 2001). Apparently, the influence of the diversity within the 

MHC on the survival of natural populations, especially on disease resistance, requires a deeper look 

(Radwan et al., 2010). Is it a question of quality or quantity? 

Need to protect MHC diversity  

The major histocompatibility complex (MHC) is a molecule that allows the immune system to recognize 

and eradicate pathogenic infections. Infectious pathogens are now regarded to be the primary selective 

mechanism driving and maintaining the MHC's incredible diversity. To combat emerging pathogenic 

threats and ensure biological systems’ long-term survival, high levels of MHC polymorphism must be 

maintained (Sommer, 2005; Piertney and Oliver, 2006; Alcaide et al., 2010). The facts that  

(1) selection impacts allele frequencies in small populations  

(2) frequency-dependence and heterozygote advantage are losing their ability in protecting polymorphism, 

is likely to contribute to the rate of decrease of MHC polymorphism.  

The loss of rare alleles owing to drift would be facilitated by an increase in the allele frequency providing 

resistance to contemporary parasites in small populations (Sanjuán and Domingo-Calap, 2019). These 

unusual alleles would have been preserved in big populations, and many of them can be momentarily 

unfavorable (given the existing parasite genotype composition), lowering average population fitness 

(Loewe and Hill, 2010). As a result, population fitness should improve when such rare unfavorable alleles 

are lost due to drift. Additionally, if highly diverse alleles are preserved, a population's ability to resist 

pathogens may be significantly enhanced. However, as MHC alleles are lost and parasites evolve, host 

fitness falls below that of pre-bottleneck levels, as host mutations are ineffective in restoring the most 

resistant alleles (Ejsmond and Radwan, 2011), raising the need to maintain the MHC's diversity.   

Reduced MHC variation may render endangered populations more susceptible to disease and negatively 

impact their capability to elicit immune responses to emerging diseases (Siddle et al., 2007). If highly 

divergent alleles are retained, a population's ability to respond to pathogens may be significantly improved. 

However, simulations indicate that the maintenance of functional diversity in endangered species is not 

reliable (Ejsmond and Radwan, 2011).  

How to protect MHC diversity 

The MHC diversity just like any other polymorphism can be substantially reduced by incidental bottlenecks, 

but as the population grows larger, selection and mutation restore variance to pre-bottleneck levels. MHC 
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diversity has been recovered via mutation in American moose (Alces alces), which experienced a population 

bottleneck during the Pleistocene glaciations (Mikko and Andersson, 1995). Selection does not tend to 

maintain a significant increase in MHC allele diversity, making it unlikely that endangered populations will 

be able to respond to emergent disease attacks. However, a swift recovery in population size may allow 

selection to retain or restore MHC variation provided suitable conservation measures are applied quickly 

enough (Ejsmond and Radwan, 2011).  

Conclusion 

As the debate lingers on whether it is the type (quality) of MHC or its quantity of diversity that confers 

protection on individuals and/or populations, there is a dire need to protect the present diversity at the locus. 

This will definitely play a very important role in maintaining the health of both humans and animals and 

ensure the conservation of biodiversity in response to the inevitable changes in our world. 

Captive breeding programs as a strategy for wildlife conservation need to consider MHC polymorphism. 

The success of this program depends largely on the adaptive fitness of the reared populations, therefore 

there is a need to increase the MHC polymorphism of individuals for such programs. The same is true for 

ex-situ conservation strategies (in zoos and other wildlife sanctuaries) and livestock industries since the 

goal is a healthy environment altogether. 

It is recommended that more quality research be directed towards the diversity of MHC in human and 

wildlife populations (especially at the community level rather than isolated studies of species) as it holds 

the key to their survival in the long run. Also, the influence of the diversity within the MHC on the survival 

of natural populations, especially on disease resistance begs for further studies. 
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