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Abstract: 

The main objective was to contribute to a better understanding of molecular characteristics of the local goat in 

order to improve its productivity and specifically to: analyse genetic polymorphism of three prolificacy genes 

(BMP15, BMPR1B, and GDF9) and test the association of genetic polymorphism and prolificacy of local goats. 

Tissue samples were collected from 446 animals, and 24 representative female goats were selected to analyse the 

genetic polymorphism of the prolificacy genes. The selected goats were divided into two groups of 12 females for 

high prolificacy (more than three kids consecutively in four parity) and 12 females for low prolificacy (less than 

two kids consecutively in four parity). Chi-square was used to test the association between genetic polymorphism 

and prolificacy of local goat. The main results showed that BMP15 gene is monomorphic, whereas the two other 

genes (BMPR1B and GDF9) display polymorphism. For BMPR1B gene, the ten mutations found did not change 

the corresponding amino acid. Allelic and genotypes frequencies of mutations of this gene varied from one 

mutation to another and between the two groups of females (high and low prolificacy). Chi-square test of the 

polymorphism of this gene shows that C34T and A120G mutations of exon 3 are significantly associated (p < 

0.05) with prolificacy and can be considered as potential genetic markers for improving prolificacy in the native 

goat. For the GDF9 gene, three mutations were detected in exon 1 with alleles A and G1 of frequency 0.261 and 

0.130 for A35G; G2 and C1 of frequency 0.696 and 0.304 for G81C; then G3 and C2 of frequency 0.696 and 0.304 

for G255C. The mutations G81C and G255C appeared under BLAST and were missense mutations P27A and 

A85G respectively while A35G is located in the non-translated 5’ region of the gene. Chi-square test between each 

genotype for any site and the prolificacy was not significant (P > 0.01) suggesting that these two characters are 

not associated. Two mutations were detected in exon 2 at C881T and A1160G sites with C and T and A and G 

alleles respectively. The two mutations changed the corresponding amino acid from Alanine to Valine at the 

position 273 in the protein and from Valine to Isoleucine at the position 397 in the protein respectively. Allelic 

and genotypes frequencies of mutations varied from one mutation to another and between the two groups of 

females (high and low prolificacy). Chi-square test of the polymorphism shows that, although C881T and A1160G 

mutations were not significantly associated (P > 0.05) with prolificacy, the alleles responsible for the variation of 

amino acid increased the litter size. Therefore, further studies with increased sample size will help to verify the 

results. 
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Introduction  

Indigenous breeds can adapt and survive in challenging environments. They adapt to a variety of 

ecological areas and thus represent a valuable genetic resource for livelihood of rural inhabitants 

(Anderson, 2003). Most food production systems depend heavily on the utilization of locally adapted 

animal species. However, the common agricultural species kept in most regions include sheep, goats, 

cattle, horses, pigs, and chicken (FAO, 1994; FAO, 1999).  

Goat (Capra hircus) is considered the most prolific of all ruminants already domesticated, especially in 

harsh climatic conditions (Yadav, A., Yadav, B. R., 2008). Goat (Capra hircus) is considered the most 

prolific of all ruminants already domesticated especially in harsh climatic conditions. This is due to their 

ability to adapt to different environmental conditions and nutritional fluctuations, disease resistance and 

the ability to survive in low-input systems (Fajemilehin and Salako, 2008; Serrano et al., 2009). 

Globally, goat farming is one whose number has increased the most over the last twenty years 

(FAOSTAT, 2010). Africa is a significant goat farming area that holds about a third of the global number 

(Rege, 1994). 

In sub-Saharan Africa, indigenous breeds of goats are more important than cattle for the small-scale 

farmers since they are easier to acquire and to maintain. Their role often includes the provision of 

traction, a source of manure, a secure form of investment, a source of savings and insurance (Kunene et 

al., 2009; Chenyambuga, 2002). Goat meat is also consumed in many regions of the world and in 

developing countries, goat is even considered as one of the important economic sources of meat (Daniel 

et al., 1996). 

Improving the reproductive efficiency of goat herds in these countries, can increase the efficiency of 

kid’s production (prolificacy) and consequently goat meat (Anous et al., 2009). However, improvement 

of reproduction by traditional selective breeding methods has proved to be difficult due to the low 

heritability only about 0.152 and long reproductive cycle (Zhang et al., 2009; Sun et al., 2010; Wang et 

al., 2012). Molecular breeding through marker-assisted selection is, for this reason, the only effective 

way to alleviate the inefficiency and long cycle length of traditional breeding. Molecular breeding can 

shorten the time of new improved variety from 8-10 generations to 2-3 generations (Wang et al., 2012).  

Some major genes affecting litter size have been successfully identified in sheep breeds, such as Bone 

Morphogenetic Protein ReceptorType 1B (BMPRIB) (Fogarty, 2009), Bone Morphogenetic Protein 

(BMP15) (Chu et al., 2007) and Growth Differentiation Factor (GDF9) (Hanrahan et al., 2004; Vacca 

et al., 2010), which made a high acceleration of the breeding improvement of litter size. However, there 

is very little information about these major genes on goats. Therefore, the identification of the genes 

responsible for prolificacy in goat is also of importance to the goat industry.  

The objective was to investigate the polymorphism of exons of the three prolificacy genes and test the 

association between genes polymorphism and level of prolificacy. 

Materials and Methods 

Study area  

This study was conducted in the Western Highlands and the Bimodal rainfall Forest agroecological 

zones of Cameroon (Figure 1) situated between 2°6’’ and 6°36’’ North latitude and 9°18’’ and 16°12’’ 

East longitude. This study area included 33 divisions in 5 Regions (Centre, South, East, West, and 

North-West).  
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Figure 1: Bimodal rainfall forest and the Western Highlands zone (Source: MINEPIA, (2010); FAO, 

(2008)) 

Data collection  

Tissue samples of 446 female goats were collected. The tissue samples of individual animals were taken 

from the ear by tissue puncher tubes. Once collected, the tissues were placed in a 1.5ml Eppendorf tube 

containing absolute ethanol (80%), and were stored at room temperature and transported to the 

laboratory with all necessary precautions for analysis. 

Molecular experimental procedures reported in this study were carried out on 24 representative animals 

according to the prolificacy trait and belonging to 24 farms, from the two agroecological zones, with 

data on litter size in the Current, Previous, Second and First parity. The 24 animals were grouped into 

two: 12 high prolific (3-6 kids consecutively per parity) and 12 low prolific (1-2 kids consecutively per 

parity). 

DNA extraction   

Genomic DNA was extracted by the saturated salt protocol provided by BecA-ILRI hub Laboratory and 

kept at - 20° C. DNA concentration and purity were evaluated by determination of the 

spectrophotometric absorbance at wave length λ= 260 and of the 260/280 ratio, respectively on a 

Nanodrop 1000. Good quality DNA having OD (optical density) ratio between 1.7 and 1.9 was used for 

further work.   

Microsatellite markers, genotyping and PCR conditions 

In the present study, eight primer pairs were initially designed at the BecA-ILRI hub laboratory using 

the primer 3 software (http://frodo.wi.mit.edu/primer3/). Each primer corresponding to one exon of each 

gene. These Primers were designed from nucleotide sequence GenBank accession number JQ350891.1 

(BMP15), AF357007 (BMPR1B) and EF446168.2 (GDF 9). The characteristics of all the primer pairs 

are described in Table 1. 
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Table 1: Primer sequences used for PCR. 

Gene Amplifie

d region 

Primer name Primer sequence (5’-3’) Size 

(pb) 

BMP 15 Exon 1 bmp15_exon1_F 

bmp15_exon1_R 

CCC ACC TGC TGT TTC TGT TT 

GCA ATG TGA AGC CTG ACA GA 

20 

20 

 Exon 2 bmp15_exon2_1_F 

bmp15_exon2_1_R 

AGG GCT GCT TGT CAG TTT GT 

GGG GAG AGC ACT TGG GTT GA 

20 

20 

GDF9 Exon 1 gdf9_exon1_1_F CAA GGG CCA ACT CCT TTA TG 20 

  gdf9_exon1_1_R CTA GCC CAC CCA CAC ACC TA 20 

 

 

Exon 2 gdf9_exon2_F CAA GGG CCA ACT CCT TTA TG 20 

20 
gdf9_exon2_R CTA GCC CAC CCA CAC ACC TA 

BMPR1B 

 

 

 

 

 

Exon 2 bmpr1b_exon2_F GCT AAA TAC TGA CCC ATCA 20 

20 
bmpr1b_exon2_R TTG GCA CAG AGT ACA AGAGC 

Exon 3 bmpr1b_exon3_F TTG ACT TGA TGG AGT ACC TG 20 

20 
bmpr1b_exon3_R GTA GCT TCA TTC TGC TTG TC 

Exon 4 bmpr1b_exon4_F GTG CCT GAA AGA GAC TCA G 20 

20 
bmpr1b_exon4_R GTA GCT TCA TTC TGM TTG TC 

Exon 10 bmpr1b_exon10_F 

bmpr1b_eon10_R 

GAT CTG CAC TCT CTG TTK AT 

GCT TGC ACT CAG TCA AAT AC 

20 

20 

Genomic DNA was amplified in 20µl reaction volume. For the reaction, 1 µl genomic DNA was 

amplified with 0.8 µl of each primer, 0.3 µl BSA, 0.3 µl Hidi, 16.8 µl water and 1.8 µl of initial premix. 

The genomic DNA was genotyped using the Sanger platform.  

The Polymerase Chain Reaction (PCR) thermal conditions, performed on a PCR machine, consisted of 

an initial denaturation step at 94°C for 3 minutes, followed by 35 cycles of denaturation at 94°C for 30 

seconds, annealing at different temperature and different time by the primer (60 °C for 40 seconds and 

56° C for 40 seconds), extension at 72°C for 90 seconds, and concluded with a final extension step at 

72°C for 7 minutes on Mastercycler. The PCR product (20µl) was digested with Hidi restriction enzyme 

at 37°C  for  2  h, and the resulting products were separated on a 1.5% agarose gel for 45 minutes, 

ethidium bromide was added to increased luminescence during visualisation and detected by  UV 

transilluminator. The gels consisted of 0.5×Tris-borate-EDTA (TBE) buffer, 8% or 10% or 12% 

polyacrylamide. 

Sequencing and statistical analysis 

The identity of DNA fragments from each genotype was confirmed by direct sequencing in both forward 

and reverse directions. 17µl of each PCR product was purified with the PCR Qiagen Kit and eluted in 

30 µl of distilled water. Analysis of nucleotide sequences and deduced amino acid sequences was 

performed with Bioedit (www.mbio.ncsu.edu/BioEdit/) software, DNASTAR, and Ugene. Comparison 

among sequences and multiple alignments were accomplished using ClustalW software 

(http://align.genome.jp/).  

Genotypic polymorphism data were analysed with the GenePop software (http://genepop.curtin.edu.au/) 

and GeneScreen program (http://dna.leeds.ac.uk/genescreen/) for allele and genotype frequencies. The 

test of association between gene polymorphism and level of prolificacy was analysed using the chi-

square method.  
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Results 

Polymorphism of BMP15 gene 

Exons amplification of BMP15. 

Figure 2 shows the electrophoresis image of BMP15 exon 1 and 2. Genomic DNA was amplified using 

a pair of primers that covered the exons sequence of the gene. 

 

 

Legend: M = Marker, CT = Sample ID, N = Blank  

Figure 2: Electrophoresis image of amplified exon 1 and 2 of BMP15 gene using specific primer. 

The results showed that desired fragments amplified properly that is consistent with the target ones and 

had good specificity so that they could be sequenced directly.  

Sequencing results and genotype differences of BMP15 

Alignment of the sequences of the two exons between them did not reveal any mutation. Also, alignment 

of the sequences with the reference query protein (GenBank accession number AFH75124.1) in NCBI 

BLAST (tblastn) did not reveal any specific difference. So, all the tested female samples were 

monomorphic for the BMP15 gene.  

Polymorphism of BMPR1B gene 

Exons amplification of BMPR1B > 

Figure 3 shows the electrophoresis images of the four exons of BMPR1B gene. 
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(a) (b) 

  

(c) (d) 

Figure 3: Electrophoresis images of amplified exon 2 (a), exon 3 (b), exon 4 (c) and exon 10 (d) of 

BMPR1B gene using specific primers. 

Figure 3 showed that desired fragments appropriately amplified and had good specificity. Also, this 

Figure shows multiple bands meaning that the primers of BMPR1B gene had polymorphisms. 

Sequencing results and genotype differences of BMPR1B> 

A total of 10 mutation sites were detected. Table 2 gives the distribution of these mutations according 

to exons and their impact at the level of the corresponding amino acid.  

Table 2: Distribution of mutations by exons of BMPR1B. 

Gene Name of the exon Number of mutations Change of amino acid 

 

BMPR1B 

2 1 No  

3 4 No 

4 2 No 

10 3 No 

Table 2 shows that the highest number of mutation was recorded in exon 3 with 4 mutations, followed 

by exon 10 with three mutations. The two others, exon 2 and exon 4 had respectively 1 and 2 mutations. 

Alignment of the sequences with the reference query protein (GenBank accession number 

AHG55161.1) in NCBI BLAST (tblastn) revealed that none of the mutations induces a change in the 

corresponding amino acid.  
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Table 3 gives the distribution of the genotype differences and the position for each mutation of BMPR1B 

exons.  

Table 3: Different genotypes and positions of BMPR1B mutations by exons. 

Exon name Mutations Position of the base Different genotypes 

2 1 C84T CC and CT 

 

 

3 

1 C34T CC, CT and TT 

2 A120G AA, AG and GG 

3 C473T CC, CT and TT 

4 C624T CC, CT and TT 

 

4 

1 C381T CC, CT and TT 

2 C532T CC, CT and TT 

 

10 

1 A44G AA, AG and GG 

2 G387T GG, GT and TT 

3 C441T CC, CT and TT 

Table 3 shows that, sequencing of exon 2 revealed a single nucleotide polymorphism (SNP) at the 

coding base position of 84 (C to T). Exon 3 revealed four single nucleotide polymorphisms (SNP) at the 

coding base position of 34 (C to T), 120 (A to G), 473 (C to T) and 624 (C to T). Exon 4 revealed two 

single nucleotide polymorphisms (SNP) at the coding base position of 381 (C to T) and 532 (C to T). 

Exon 10 revealed three single nucleotide polymorphisms (SNP) at the coding base position of 44 (A to 

G), 387 (G to T) and 441 (C to T). 

Chi-square analysis for BMPR1B genotype polymorphism 

Analysis of the genotype polymorphism by chi-square method was done, and the test result is 

summarised in Table 4. Some genotype frequencies are shown to be variable (P < 0.05) among the two 

groups of females (high and low prolificacy). An average mean was calculated for these variable 

genotypes in order to see their effect on the litter size. 

Ho: There is no association between genotypes and level of prolificacy (low and high). 

Ha: Genotypes are associated with the level of prolificacy.  

Table 4 shows that only the mutations of exon 3 at position 34 and 120 were significantly associated (p 

< 0.05) between the high and low prolific female goats. The other genotypes were equally distributed 

among high and low prolific female goats. The mean litter size according to genotypes confirmed that, 

for the first mutation, the female with genotype CT had 2.50 kids more than those with genotype CC 

and 1.23 kids more than those with genotype TT. For the second mutation, the female with genotype 

AG had 0.10 kids more than those with genotype AA and 2.17 kids more than those with genotype GG. 

These results indicated that mutations of exon 3 of BMPR1B gene could be associated with high 

prolificacy in Cameroon native goat of the western highland and bimodal rainfall forest zones. 
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Table 4: Chi-square testing of genotype polymorphism of BMPR1B gene. 

Group of doe  Exon  Mutation  Genotypes Chi-square value P-value Association 

High prolific Exon 2 C87T CC 

CT 

0,069 0,801 NA 

Low prolific 

High prolific Exon 3 C34T CC 

CT 

TT 

6,851 0,013 A 

Low prolific 

High prolific Exon 3 A120G AA 

AG 

GG 

6,569 0,049 A 

Low prolific 

High prolific Exon 3 C473T CC 

CT 

TT 

3,733 

 

0,155 

 

NA 

Low prolific 

High prolific Exon 3 C623T CC 

CT 

TT 

0,110 

 

0,740 

 

NA 

Low prolific 

High prolific Exon 4 C381T CC 

CT 

TT 

0,202 

 

0,653 

 

NA 

Low prolific 

High prolific Exon 4 C532T CC 

CT 

TT 

0,002 

 

0,964 

 

NA 

Low prolific 

High prolific Exon 10 A44G AA 

AG 

GG 

3,069 

 

0,216 

 

NA 

Low prolific 

High prolific Exon 10 G387T GG 

GT 

TT 

1,209 

 

0,546 

 

NA 

Low prolific 

High prolific Exon 10 C441T CC 

CT 

TT 

4,579 

 

0,101 

 

NA 

  Low prolific 

A = Association and NA = No Association  

Polymorphism of GDF9 gene 

Exons amplification of GDF9 

Genomic DNA was amplified using a pair of primers that covered exon 1 and exon 2 sequence of GDF9 

gene. The electrophoresis image (Figure 4) showed that desired fragments amplified properly that is 

consistent with the target ones and had good specificity so that they could be sequenced directly.  
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Figure 4: Electrophoresis image of amplified GDF9 gene using a specific primer. 

Figure 4 shows the electrophoresis image of GDF9 gene. Genomic DNA was amplified using a pair of 

primers that covered the exon 2 sequence of GDF9 gene. 

Sequencing results and genotype differences of GDF9 gene 

A total of five mutations sites were detected. Table 5 gives the distribution of the genotype differences, 

the position for each mutation and their impact at the level of the amino acid. This table (table 5) shows 

that sequencing of exon 1 revealed three single nucleotide polymorphism (SNP) at the coding base 

position of 35 (A to G), 81 (G to C) and 255 (G to C). Sequencing of exon 2 revealed two single 

nucleotide polymorphism (SNP) at the coding base position of 881 (C to T) and 1160 (G to A).  

 

Table 5: Distribution of mutations of GDF9 gene. 

 

Gene Name of 

exon 

Number of 

mutations 

Position of the 

base 

Different 

genotypes 

Change of amino 

acid 

GDF9 1 3 A35G AA, AG and 

GG 

No 

   G81C GG, GC and 

CC 

Yes 

   G255C GG, GC and 

CC 

Yes 

 2 2 C881T CC and CT Yes 

   G1160A GG, GA and 

AA 

Yes 

Table 5 also shows that alignment of the sequences with the reference query protein (GenBank accession 

number AEW47006.1 and AEM23949.1) in NCBI BLAST (tblastn) revealed that some of these Single 

Nucleotide Polymorphisms induce a change at the level of the corresponding amino acid. 

The first nucleotide change did not cause any replacement at the level of amino acid. The second 

nucleotide leads to a replacement of Proline with Alanine at position 27 (P27A) of the protein. The third 

nucleotide caused replacement of Alanine with Glycine at position 85 (A85G) of the protein. The fourth 
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nucleotide change caused replacement of Alanine with Valine at position 273 (A273V) in the coding 

residue. The fifth nucleotide caused replacement of Valine with Isoleucine at position 396 (V396I) in 

the coding residue.   

Inspection of exon 2 of GDF9 gene showed two mutation sites. The first is at nucleotide No. 881 

(C881T) with a change in amino acid from Alanine to Valine (A273V) and the second is at nucleotide 

No. 1160 (A1191G) with a change in amino acid from Valine to Isoleucine (V397I). Looking closely at 

two of the ten SNPs identified so far in sheep GDF9 gene (Table 6), the second mutation (A1160G) in 

Cameroon native goat with a change from Valine to Isoleucine can be comparable to G6 (A994G or 

V332I) mutation in sheep identified by Hanrahan et al., (2004). 

Table 6: Major mutations of GDF9 gene identified in sheep. 

 Base 

change 

Coding 

base 

(bp) 

Coding 

residue 

(amino 

acid) 

Mature 

peptide 

residue (amino 

acid) 

Amino acid 

change 

Reference 

G1 G to 

A 

260 87 - Arg to His Hanrahan 

et al. 

(2004) 

G2 C to 

T 

471 157 - Unchange

d Val 

- 

G3 G to 

A 

477 159 - Unchange

d Leu 

- 

G4 G to 

A 

721 241 - Glu to Lys - 

G5 A to 

G 

978 326 8 Unchange

d Glu 

- 

G6 G to 

A 

994 332 14 Val to Ile - 

G7 G to 

A 

1111 371 53 Val to Met - 

G8 C to 

T 

1184 395 77 Ser to Phe - 

FecGSI T to 

G 

1034 345 27 Phe to Cys Melo et al. 

(2008) 

FecTT A to 

C 

1279 427 109 Ser to Arg Nicol et al. 

(2009) 

A152G A to 

G 

152 51 - Asn to Asp Li et al. 

(2003) 

T692C T to 

C 

692 231 - Leu to Thr Gao (2007) 

 

Association between genotype polymorphism and Prolificacy  

 

Analysis of the genotype polymorphism by chi-square method was done, and the result is 

summarised in Table 7. For the mutations causing a changed at the corresponding amino acid, least-
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squares means were calculated for those genotypes in order to see their effect on litter size (Table 8 and 

Table 9).  

 

Table 7: Chi-square testing of genotype distribution of GDF9 gene.  

 

Group of doe Exon  Mutation  Genotypes P-value Association 

High prolific 

Low prolific 

Exon 1 A35G AA 

AG 

GG 

0.261 NA 

High prolific 

Low prolific 

Exon 1 G81C GG 

GC 

CC 

0.522 NA 

High prolific 

Low prolific 

Exon 1 G255C GG 

GC 

CC 

0.522 NA 

High prolific Exon 2 C881T CC 

CT 

0,178 NA 

Low prolific 

High prolific Exon 2 A1160G AA 

AG 

GG 

0,173 NA 

Low prolific 

 

A= Association; NA= No Association  

Table 7 shows that none of the genotypes of GDF9 were significantly associated (p > 0.05) with the 

level of prolificacy. A low sample size of females can explain these results. Therefore, for economic 

reasons, only 24 females were used.  

For C881T mutation, animals with CT genotype had a change in their amino acid, and the frequency of 

this genotype responsible for the amino acid change was higher (0.42) in the group of high prolific 

animals. The mean litter size by genotypes was 3.4 (SD=1.40) and 2.29 (SD=0.97) for CT and CT 

genotypes respectively.  
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Table 8: Least squares means and standard error for litter size of CC and CT genotypes of GDF9 gene 

exon 2. 

Genotype Observation (does) Mean of litter size Std. Deviation 

CC 17 2.29 ± 0.97 

CT 7 3.43 ± 1.40 

As shown in Table 8, the female with genotype CT had 1.4 kids more than those with genotype CC. The 

results indicated that allele T was significantly correlated with high prolificacy in Cameroon native goat. 

Table 9: Least squares means and standard error for litter size of AA, AG, and GG genotypes of GDF9 

gene exon 2. 

Genotype Observation (does) Mean of litter size Std. Deviation 

AA 3 2.33 ± 1.16 

AG 10 2.80 ± 1.03 

GG 11 2.55 ± 1.44 

For A1160G mutation, animals with AA and AG genotype had a change in their amino acid, and the 

frequency of this genotype responsible for the amino acid change was higher (0.17 and 0.50 

respectively) in the group of high prolific animals. The mean litter size by genotypes was 2.33 (SD=1.1), 

2.83 (SD=1.03) and 2.55 (SD=1.44) for AA, AG and GG genotypes respectively. As shown in Table 9, 

the female with genotype AA and AG had 2.8 kids more than those with genotype GG. The results 

indicated that allele A was significantly correlated with high prolificacy in Cameroon native goat. 

Discussion  

In this research, Cameroon native goat BMP15, BMPR1B, and GDF9 gene exons were sequenced for 

the first time. Several genes are defined to have associations with fecundity in some animals.  

Goat breeding is just like sheep; we also need to find out the key mutations in the prolificacy genes and 

know how these mutations affect reproduction and how to increase the reproductive capability including 

reproductive seasonality and litter size, which will be a rapid and economical method to improve the 

goat breeding speed. 

Some of the prolificacy genes were studied in goats (Hua, et al., 2008; Ran et al., 2009; Arefnezhad et 

al., 2010; Ren et al., 2010 and Hadizadeh et al., 2014;) and it is determined that their influence in 

prolificacy of goats were not as significant as  in  sheep.  

Polymorphism of BMP15, BMPR1B, and GDF9 gene was studied by a simple PCR followed by 

sequencing. This technic was also used by Ran et al. (2009), Ren et al. (2010) and Yosefabad et al. 

(2011) to study the polymorphism of these same genes.  

Exon 1 and 2 of BMP15 gene are monomorphic for all the tested samples in the study area. This result 

is comparable to those of Arefnezhad (2007) and Hamid et al. (2009) cited by Alakilli et al. (2012) 

respectively on Markhoz goats and Iranian local goats and also comparable to those of Polley et al. 

(2009) on Black Bengal goats. Similar results were also observed by Hua et al. (2008) and by Palai et 

al. (2012) who mentioned the absence of FecXI, FecXH, FecXB, et FecXG mutations on Boer, Haimen, 

Huanghuai, Nubi, Matou, Raighar and Boer-Huanghuai crossed breeds of goats. So, it appears as in 

many other breeds that, BMP15 gene may not be the factor responsible for the variability of types of 

birth observed on goats of the western highlands and bimodal rainfall forest zones of Cameroon. 

However, contradictory results have been observed in other breeds. Polymorphism of BMP15 gene was 

reported in many studies and having or not a significant effect on the litter size. On the White goat of 

Guizhou, Lin et al. (2007) reported an S99I mutation, only present on Does having three kids per 

kidding. This mutation was then confirmed by Ran et al. (2009) who revealed four other mutations on 
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this same breed. Chu et al. (2007a) cited by Zhu et al. (2013) identified two point mutations in BMP15 

gene and was significantly associated with litter size of Jining Grey goats. A similar result was reported 

by Abdel-Rahman et al. (2013) on 25 Anglo-Nubian goats. Also, the study of Wang et al. (2011) 

reported four SNPs in exon 2 of BMP15 gene on Funiu white breed and Taihang black breed goats, and 

which seams affecting the litter size of the Funiu white goat. Recently, Feng et al. (2014) suggested that 

the mutation S32G of the amino acid could be responsible for prolificacy on Matou breed and also on 

Jining Grey breed. Nevertheless, the contribution of BMP15 gene on prolificacy remain with doubt and 

still need to be master. 

BMPR1B gene polymorphism results showed ten mutations: C87T (exon 2), C34T, A120G, C473Tand 

C624T (exon 3), C381T and C532T (exon 4), A44G, G387T and C441T (exon 10). None of the ten 

mutations changed the corresponding amino acid, so all were silent mutations. The study of five Chinese 

native goat breeds (Jining Grey, Anhui White, Wendeng Dairy, Liaoning Cashmere and Beijing native 

goats) had no Q249R mutation (Chu et al., 2006). The present study identified ten mutations which are 

not similar to what was obtained by other authors. None of the mentioned mutations above was recorded 

in the Cameroon native does. The FecB mutation (A746G or Q249R) had no significant influence on 

litter size in Jining Grey, Boer, Anhui White, Wendeng Dairy, Liaoning Cashmere or Beijing native 

goats (Chu et al., 2006). The results in the present study are not similar to the results mentioned above. 

GDF9 gene has two exons. The available literature reports very little on the polymorphism of exon 1 of 

goats, the essential of studies are on exon 2. Three SNPs A35G, G81C, and G255C were identified 

during this study. None of the mutations is identical to those observed in the available literature. Wang 

et al. (2011), Hanrahan et al. (2004) reported a mutation site on exon 1 respectively on goat and sheep. 

Yosefabad et al. (2011) observed a silence mutation on exon 1 of GDF9 gene of Markhoz goat. These 

results are therefore contradictory to those of Polley et al. (2009) who reported a monomorphism on 

exon 1 on Black Bengal goats tested with the G1 (R87H) mutation of sheep. None of the mutations in 

exon 1 has been reported so far to be significantly associated with prolificacy on mammals. Also, 

according to Zhang et al. (2012), the structure, the mechanisms of action and the control of important 

functions of genes have not been totally clarified.  

Four mutations G423A, A959C (Q320P), C881T (A273V) and G1189A (V397I) in exon 2 of the GDF9  

gene had been detected extensively in  several  goat  breeds.  Mutation G423A was detected in Jining 

Grey, Liaoning Cashmere and Boer goats (Wu et al., 2006; Feng et al., 2011), Wendeng  Dairy  and  

Beijing  native  goats  (Wu  et al., 2006) and Guizhou White goats (Feng  et al.,  2010). Mutation A959C 

was  found  in  Yangtse  River  Delta White and Huanghuai goats (Zhang et al., 2008), Jining Grey,  

Liaoning  Cashmere, and  Guizhou  White  goats (Feng  et al.,  2011) and Boer goats (Zhang et al., 

2008; Feng et al.,  2011).  Mutation C881T was found in Beetal goats (Hadizadeh et al., 2014); mutation 

G1189A was identified in Jining Grey, Liaoning Cashmere and Boer goats (Wu et al.,  2006; Feng  et 

al.,  2010), Guizhou White goats (Du et al., 2008; Feng  et al., 2010), Wendeng Dairy and Beijing native 

goats (Wu et al., 2006; Feng et al., 2010). In the present study, two mutations were detected in exon 2 

of GDF9. The first mutation which changes the amino acid from Alanine to Valine was the same identify 

in Beetal prolific goats (Hadizadeh et al., 2014). The second mutation A1189G which change the amino 

acid from Valine to Isoleucine is comparable to G6 mutation found in sheep (Hanrahan et al., 2004) and 

mutation identified in Jining Grey, Liaoning Cashmere and Boer goats (Wu et al., 2006; Feng et al., 

2010), Guizhou White goats (Du et al., 2008; Feng et al., 2010), Wendeng Dairy and Beijing native 

goats (Wu et al., 2006; Feng et al., 2010). In this study, for the GDF9 exon 2 mutation, the means were 

3.43±1.40 (n=7) for the heterozygous CT genotype and 2.29±0.97 (n=17) for the homozygous CC 

genotype. Does with genotype CT had 1.14 (P < 0.05) kids more than those with genotype CC. The 

result showed that GDF9 gene is either a significant gene that influences the prolificacy in Cameroon 

native goat in the study area or a molecular genetic marker in close linkage with such a gene. Further 

extensive sampling and DNA analysis would be required to verify these results. Hanrahan et al. (2004) 

found that the least-squares mean for ovulation rate of Belclare ewes with wild type and G8 mutation 

heterozygote were 1.92±0.28 (n=11) and 2.67±0.89 (n=1), respectively, and which of Cambridge ewes 

were 2.27±0.49 (n=10) and 4.28±0.31 (n=28), respectively. Ewes with G8 mutation homozygote were 
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infertile in Belclare and Cambridge sheep (Hanrahan et al. 2004). Hadizadeh et al., (2014) found that 

goat with genotype CT had 1.43 (P < 0.05) kids more than those with genotype CC. The results indicated 

that allele T was significantly correlated with high prolificacy in Beetal goat. 

Conclusion  

The current study was designed to evaluate the polymorphism of Prolificacy genes (BMP15, BMPR1B, 

and GDF9) on Cameroon native goats. BMP15 gene was monomorphic, whereas BMPR1B and GF9 

genes displayed polymorphism. Some few polymorphisms found so far in the genomes of many prolific 

breeds throughout the world were present in the native goat we examined especially for GDF9 exon 2. 

The allelic and genotypes frequencies of these mutations also varied from one mutation to the other and 

between the two groups of females (high and low prolificacy). Although C881T and A1160G mutations 

were not significantly associated with prolificacy, the alleles responsible for the variation of amino acid 

increased the litter size.  In Cameroon native goats, the genetic factors controlling twinning, triplet, and 

quadruplet are related to the mutations in the Booroola gene and probably in the GDF9 gene. Further 

studies with the increase in the sample size are required to confirm these results.  
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