Genetic Diversity of Mitochondrial DNA (mtDNA) D-Loop Sequences in Six Improved Tropically Adapted Chicken Breeds (iTABs) in Imo State, Nigeria

Authors

  • Mirian Okani-Onyejiaka
  • Uduak E OGUNDU Department of Animal Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
  • Selma Farah BOUDALI Laboratoire de Génétique Moléculaire et Cellulaire (LGMC), Université des Sciences et de la Téchnologie d'Oran Mohamed Boudiaf,USTO-MB, BP 1505, El M'naouer, Oran Algérie
  • Oladeji BAMIDELE African Chicken Genetic Gains, International Livestock Research Institute, Addis Ababa, Ethiopia
  • Ifeanyi P OGBUEWU Department of Animal Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
  • Nnanyere O ALADI Department of Animal Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria

DOI:

https://doi.org/10.46325/gabj.v6i2.289

Keywords:

Differenciation, iTABs, Phylogenetics, Polymorphism, Nigeria, Smallholder-poultry

Abstract

The improved tropically adapted chicken breeds (iTABs) are low-input-high-output chickens suitable for smallholder poultry (SHP). Six iTABs (Fulani, FUNAAB Alpha, Kuroiler, Noiler, Sasso and Shika Brown) were introduced, and were raised under semi-intensive management system and tested under the African Chicken Genetic Gains project in Nigeria. The objective of this study was to evaluate the genetic diversity of these iTABs tested in Imo State Nigeria using mitochondrial DNA (mtDNA), Blood samples were collected from 77 chickens belonging to these six populations of iTABs in the ratio (12:12:14:13:13:13), for Noiler, FUNAAB Alpha, Shika Brown, Kuroiler, Sasso and Fulani chickens, respectively. Genomic DNA was extracted from seventy-seven birds randomly selected from the six iTABs. A 450-bp mtDNA D-loop region was sequenced.  The highest (H=5) and the lowest (H=2) number of haplotypes were found within Noiler, and Shika Brown/Fulani, respectively. Among the six populations, haplotype and nucleotide diversity was 0.558±0.063 and 0.0064±0.0013, respectively. A total of 8 haplotypes were identified from 15 polymorphic sites. These haplotypes clustered into three clades with 87.89% of the total maternal genetic variations occurring within population. Fulani and Shika Brown had the least (0.000) genetic distance. Tajima’s D was negative among populations and within Noiler, Kuroiler, Sasso and Fulani populations but was only statistically significant within the Noiler population. Diversity indices of this study revealed that mtDNA polymorphism was on the average both within populations and among populations. The results indicate the existence of two distinct maternal lineages from Southeast Asia, south central and Southeast China evenly distributed among the iTABs. The average genetic diversity observed within population can be utilized for the long-term genetic improvement and stabilization of the breeds.

References

Abdel-Basset ME. Fayza MA. Adel-Almaaty AH Mohammed A 2014. Assessment of genetic variation and changes in protein subunits induced by petroleum oil in three species of red sea fishes using SDS-PAGE and ISSRs markers. Journal of pharmacy and biological sciences, 9165:16-22. DOI: 10.9790/3008-09621622.

Adebambo OA. Mwacharo JM. Oladejo BM. Adewale RA. Ilori L 2010. Lack of phylogenetic structure in Nigerian village chickens revealed by mitochondrialDNA D-loop sequence analysis. International Journal of Poultry Science 9(5): 503-507. DOI: 10.3923/ijps.2010.503.507.

Adebambo O. Adebambo A. Adeleke M. Adeleye A. Adetunji A. Ajayi F. Akinola W. Alabi O.Bamidele O. Dessie T. Ikeobi C. Ogundu U. Ojoawo H. Osinbowale D. Ozoje M. Peters S. Sonaiya B. Wheto M. Yakubu A 2018. Genetic Conservation through effective utilization of the improved indigenous Chicken breeds by rural households in Nigeria. Tropical animal health and production, 52(1), 95-107.https://hdl.handle.net/10568/98516.

Alabi OO. Ajayi FO. Bamidele O. Yakubu A. OgunduEU. Sonaiya EB. Ojo MA. Hassan WA. Adebambo OA 2020. Impact assessment of improved chicken genetics on livelihoods and food security of smallholder poultry farmers in Nigeria. Livestock Research for Rural Development 32(77): DOI:10.1080/23311932.2018.1477231.

Avise JC. 2004. Molecular markers, natural history, and evolution. 2nd Edition. Sinauer ssociates, Inc. Publishers, Sunderland, Massachusetts. P-541. DOI: 10.1007/978-1-4615-2381-9.

Bamidele O. Sonaiya EB. Adebambo OA. Dessie T 2020. On-station performance evaluation of improved tropically adapted chicken breeds for smallholder poultry production system In Nigeria. Tropical Animal Health Production 52: 1541–1548. DOI: 10.1007/s11250-019-02158-9.

Bamshad MJ. Wooding S. Watkins WS. Ostler CT. Batzer MA. Jorde LB 2003. Human population genetic structure and inference of group membership. Am J Hum Genet, 72: 578–589. DOI: 10.1086/368061.

Bjørnstad ON. Tobin PC. Robinet C. Johnson DM. Whitmire SL. Liebhold AM 2009. The role of Allele effects in gypsy moth, Lymantria dispar (L.), invasions. Population Ecology 51:373-384. DOI: 10.1007/s10144-009-0144-6.

Boudali SF. Al-Jumaili AS. Bouandas A. Mahammi FZ. Tabet Aoul N. Hanotte O. Gaouar SBS 2020. Maternal origin and genetic diversity of Algerian domestic chicken (Gallus gallus domesticus) from North-Western Africa based on mitochondrial DNA analysis. Animal Biotechnology, 1-11. DOI: 10.1080/10495398.2020.1803892.

Brown WM. Prager EM. Wang A. Wilson AC 1982. Mitochondrial DNA sequences of primers: tempo and mode of evolution. Journal of molecular evolution 18(4): 225-239. DOI: 10.1007/bf01734101.

Bruford MW. Bradley DG. Luikart G. 2003. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 4:900–910. DOI: 10.1038/nrg1203.

Crawford R.D. (1990). Origin and history of poultry species. In: Poultry Breeding and Genetics, No. 04; SF492, C7.). DOI: 10.5962/bhl.title.24836.

Cuc NTK. Simianer H. Eding H. Tieu HV. Cuong VC. Wollny BA. Groeneveld LF. Weigend S 2011. Assessing genetic diversity of Vietnamese local chicken breeds using microsatellites. Animal Genetics 41:545-547. DOI: 10.1111/j.1365-2052.2010.02039.x.

Darwin CR. 1868. The Variation of Animals and Plants under Domestication. John Murray, London.First edn, First issue. 2:1-18. DOI: 10.5962/bhl.title.46249.

Do SQ. Nguyen LTP. Nguyen TH. Nguyen, TQ 2019. Genomic characterization of three Vietnamese indigenous chicken varieties using mitochondrial D-loop sequences. Canadian Journal of Animal Science, 99(4), 833-839. DOI: 10.1139/cjas-2019-0025.

Excoffier L. Smouse PE. Quattro JM 1992. Analysis of molecular variance inferred from metric distances amongDNA haplotypes - application to human mitochondrial DNA restriction data.Genetics 131:479-491. DOI: 10.1093/genetics/131.2.479.

Excoffier L. Laval G. Schneider S. 2006. Arlequin Version 3.01, An Integrated Software Package for Population Genetics, Data Analysis Computational and Molecular Population Genetics Lab, Geneva, Switzerland. DOI: 10.1177/117693430500100003.

Excoffier L. Lischer H. 2015. Arlequin ver.3.5. 2, An integrated software package for population genetics data analysis, Institute of Ecology and Evolution, University of Berne, Switzerland. DOI: 10.1111/j.1755-0998.2010. 02847.x

Frankham R.2005. “Genetics and Extinction” Biological Conservation,126 (2): 131-140. DOI: 10.1515/9780691224039-004.

Fumihito A. Miyake T. Takada M. Shingu R. Endo T. Gojobori T. Kondo N. Ohno S. 1996. Monophyletic origin and unique dispersal patterns of domestic fowls. Proceedings of theNational Academy of Sciences of the United States of America, 93:6792–5. DOI: 10.1073/pnas.93.13.6792.

Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitch hiking and background selection. Genetics,147:915–925. DOI: 10.1093/genetics/147.2.915.

Galtier N. Duret L. Glemin S. Ranwez V. 2009. GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet. 25, 1–5. DOI: 10.1016/j.tig.2008.10.011.

Gongora J. Rawlence NJ. Mobegi VA. Jianlin H. Alcalde JA. Matus JT. Cooper A. 2008. Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proceedings of the National Academy of Sciences, 105(30), 10308-10313. DOI: 10.1073/pnas.0801991105.

Geospiza Research Team. 2004. Finch TV version 1.4.0 for windows. Available at: www.geospiza.com/finchtv.

Guan MX. Fischel-Ghodsian N Attardi G. 2012. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet. 10:573–580. DOI: 10.1093/hmg/10.6.573.

Komiyama T. Ujike H. Harano M. Inada T. Yamada M. Sekine Y. Nakata K. 2003. Nine-or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong riskfactor for prolonged Methamphetamine psychosis. The pharmacogenomics journal 3(4):242. DOI: 10.1038/sj.tpj.6500189.

Kumar S. Stecher G. Li M. Knyaz C. Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096 .

Laga V. Loukovitis D. Siasiou A. Mitsopoulos I. Lymberopoulos AG. Chatziplis D 2018. Genetic diversity of Greek sheep breeds and trans-humant populations utilizing microsatellite markers. Small Ruminant Research, 136: 238-242. DOI: 10.1016/j.smallrumres.2016.02.008.

Liu ZG. Lei CZ. Luo J. Ding C. Chen GH. Chang H. Wang KH. Liu XX. Zhang XY. Xiao XJ. Wu SL. 2004. Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Aust. Journal of Animal Science. 17: 903-909. DOI: 10.5713/ajas.2004.903.

Liu YP. Wu GS. Yao YG. Miao YW. Luikart G. Baig M. Beja- Pereira A.Ding ZL. Palanichamy MG. Zhang P. 2006. Multiple maternal origins of chickens out of the Asianjungles. Molecular Phylogenetics and Evolution 38: 12–19. DOI: 10.1016/j.ympev.2005.09.014 .

Mahendra KP. 2015. Importance of indigenous breeds of chicken for the economy and their input for higher production performance. Regional centre, Central avian research Institute (ICAR), Baramunda, Bhubane swas 75:1003. https://doi.org/10.1155/2016/2604685 .

Mwacharo JM. Bjørnstad G. Mobegi V. Nomura K. Hanada H. Amano T 2010. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution. 58(2), 374-382. DOI: 10.1016/j.ympev.2010.11.027.

Mwacharo JM. Bjørnstad G. Mobegi V. Nomura K. Hanada H. Amano T. Jianlin Hanotte O. 2011. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Journal of Moleculatr Phylogenetic Evolution 58: 374-382. DOI: 0.1016/j.ympev.2010.11.027.

Miao YW. Peng MS. Wu GS. Ouyang YN. Yang ZY. Yu N. Liang JP. Pianchou G. Beja-Pereira A. Mitra B. Palanichamy MG. Baig M. Chaudhuri TK. Shen YY. Kong QP. Murphy RW. Yao YG. Zhang YP. 2013. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity 110: 277-282. DOI: 10.1038/hdy.2012.83 .

Mobegi VA. Kovana M. Nwakanma DC. 2005. Mitochondrial DNA D-loop sequences reveal the genetic diversity of African chicken. Proceedings of the 4thAll Africa Conference on Animal Agriculture.Sept. 20-24 Arusha,Tanzania, Pp:293-298. (Google Scholar).

Mobegi VA. Chicken Diversity Consortium 2006. Mitochondrial DNA D-loop sequences reveal the genetic diversity of African chicken. In the role of Biotechnology in Animal Agriculture to address poverty in Africa: opportunities and challenges. In: Rege JEO. Nyamu AM. Sanbalo V. (eds) ILRI Publication, Nairobi, Pp. 293-298. (Google Scholar).

Mtileni BJ. Muchadeyi FC. Mairoashe A. Groeneveld E. Groenevdd LF. Dzaina K. Weigend S. 2011. Genetic diversity and conservation of South African indigenous chicken populations. J. Anim. Breed. Genet. 128:209-218. DOI: 0.1111/j.1439-0388.2010.00891.x

Muchadeyi F. Eding H. Simianer H. Wollny CBA. Groeneveld E. Weigend S. 2008. Mitochondrial DNA D-loop sequences suggest a Southeast-Asian and Indian origin of Zimbabwean village chickens. Animal Genetics 39:615–622. DOI:10.1111/j.1365-2052.2008. 01785.x.

Nei M. 1987. Molecular evolutionary genetics. Molecular Biology and Evolution, New York, Columbia University Press. Volume 4, Issue 4, Jul 1987, Pp: 406–425 https://doi.org/10.7312/nei-92038 .

Nijman IJ. Otsen M. Verkaar ELC. Ruijter C. Hanekamp E. Ochieng JW. Shamshad S. Rege JEO. Hanotte O. Barwegen MW. Sulawati T. Lenstra JA 2003. Hybridization of banteng (Bos javanicus) and zebus (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity, 90: 10-16. DOI: 10.1038/sj.hdy.6800174 .

Nishibori M. Shimogiri T. Hayashi T. Yasue H 2005. Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Animal Genetics, 36: 367–75. DOI: 10.1111/j.1365-2052.2005. 01318.x .

Niu D. Fu Y. Luo J. Ruan H. Yu XP. Chen G. Zhang YP 2002. The origin and genetic diversity of Chinese native chicken breeds. Biochem Genet. 40(5/6):163-174. https://doi.org/10.1093/ps/81.10.1463.

Ohno S. 1997. The one ancestor per generation rule and three other rules of mitochondrial inheritance. Proc. Natl. Acad. Sci. USA. 94 :8033-8035. https://doi.org/10.1073/pnas.94.15.8033 .

Oka T. Ino Y. Nomura K 2007. Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Animal Genetics 38: 287–93. DOI: 10.1111/j.1365-2052.2007.01604. x.

Okorie FC. 2015. Analysis of 30 years rainfall variability in Imo State of southeastern Nigeria. Proceedings of the International Association of Hydrological Sciences, 366, 131-132. DOI: 10.5194/piahs-366-131-2015.

Pariset L. Mariotti M. Gargani M. Joost S. Negrini R. Perez T. Bruford M. MarsanPA. Valentini A 2011. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). The Scientific World Journal 11:1641–1659. DOI: 10.1100/2011/186342 .

Revay T. Bodzsar N. Mobegi VE. Hanotte O. Hidas A 2010. Origin of Hungarian indigenous chicken breeds inferred from mitochondrial DNA D-loop sequences. Animal Genetics. 41:548 –50. DOI: 10.1111/j.1365-2052.2010.02041. x.

Research for Development 2017. Effect of varying levels of dietary energy and protein on reproductive performance of FUNAAB-alpha hens. In: Saleh B. Mbap ST. Kalla, D JU. Doma UD. Duwa H. (eds) Livestock Research for Rural Development, 29: 3. DOI: 10.51791/njap. v44i2.1023 .

Rozas J. Ferrer-Mata A. Sánchez-DelBarrio JC. Guirao-Rico S. Librado P. Ramos-Onsins SE. Sánchez-Gracia A 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302. DOI: 10.1093/molbev/msx248 .

Saccone C. Lanave C. Preparata G 1990. Mammalian genes as molecular clocks? Journal of molecular evolution 21(4):346-350. DOI: 10.1007/bf02115653 .

Sonaiya EB. Branckaert RDS. Gueye EF. 1999. Research and development options for family poultry. In First INFPD/FAO electronic Conference on family poultry. Rome: FAO. DOI: 10.1017/s0043933907001353 .

Sonaiya F. 2014a. Feeds and feeding. In: Decision tools for family poultry development. FAO Animal Production and Health Guidelines No. 16. Rome, Italy. Pp.26-28. DOI: 10.1016/j.gfs.2017.04.003.

Sonaiya F. 2014b. Identifying appropriate interventions. In: Decision tools for family poultry development. FAO Animal Production and Health Guidelines No. 16. Rome, Italy.Pp. 28 30. DOI: 10.1016/j.gfs.2017.04.003.

Smith J. Sones K. Grace D. MacMillan S. Tarawali S. Herrero M. 2013. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Animal Frontiers, 3(1), 6-13. DOI: 10.2527/af.2013-0002 .

Steffen W. Sanderson A. Tyson PD. Jager J. Matson PM. Moore B. Oldfield F. Richardson K. Schnellnhuber HJ. Turner BL. Wasson RJ. 2008. Global change and the Earth system: A planet under pressure. Springer-Verlag, New York, USA. Pp 336. DOI: 10.1007/3-540-26607-0_3.

Su AI. Welsh JB. Sapinoso LM. Kern SG. Dimitrov P. Lapp H. Hampton GM 2002. Molecular classification of human carcinomas by use of gene expression signatures. Cancer research, 61(20), 7388-7393. DOI: 10.1016/s0959-8049(02)80401-4 .

Stumpf DL. 2004. Haplotype diversity and SNP frequency dependence in the description of genetic variation. European Journal of Human Genetics 12: 469-477. DOI: 10.1038/sj.ejhg.5201179 .

Sunnucks P. 2011. Efficient genetic markers for population biological Trends. Ecol Evol 15:199-203. DOI: 10.1016/s0169-5347(00)01825-5 .

Teinlek P. Siripattarapravat K. Tirawattanawanich C 2018. Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australasian journal of animal sciences,31(6),804. DOI: 10.5713/ajas.17.0611.

Tobias JA. 2003. Notes on breeding behavior in Black-faced Cotinga Conioptilonmcil hennyi. Cotinga 19: 80–81. 3). DOI: 10.1676/02-074.

Tobias JA. Nelson PT. Baldwin DA. Scearce LM. Oberholtzer JC. Mourelatos Z 2004. Micro array-based, high-throughput gene expression profiling of microRNAs. Nature methods,1:(2),155. DOI: 10.1038/nmeth717.

Tobias C. Twigg P. Hayden D. Vogel K. Mitchell R. Lazo G 2005. Analysis of expressed sequence tags and the identification of associated short tandem repeats in switch grass. Theor. Appl. Genet.111:956–964. DOI: 10.1007/s00122-005-0030-3.

Tobias CM. Hayden DM. Twigg P. Sarath G 2006. Genetic microsatellite markers derived from EST sequences of switch grass (Panicum virgatum L.). Mol. Ecol. 6 :185–187. DOI : 10.1111/j.1471-8286.2006.01187. x.

Tobias R. Atkinson A. Donev A. 2007. Optimum experimental designs, with SAS (Vol. 34). Oxford University Press. DOI: 10.1080/00401706.1993.10485359 .

Torroni A. Shurr TG. Cabell MF 1993. Asian affinities and continental radiation of the four founding Native American mtDNA. Ani. J. Hum. Genet. 53:563-590. DOI: 10.1515/9781400821068.166.

Tserenbataa T. Ramey RR. Ryder OA. Quinn TW. Reading RP 2004. A population genetic comparison of argali sheep (Ovisammon) in Mongoliausingthe ND5 gene ofmito chondrial DNA: implications for conservation. Mol. Ecol.13:1333–1339. DOI: 10.1111/j.1365 294x.2004.02123.x .

Wethli E. 2003. Improving the productivity of indigenous chickens in rural villages. In Proceedings of 1st National Workshop on indigenous poultry development. Pietermaritzburg, South Africa–29-30 October. Pp: 120-126. DOI: 10.1080/00071660410001715911.

Wright S. Pickton D. 1998. What's swot in strategic analysis? Strategic change 7(2): 101-109. DOI: /10.1002/ (sici) 1099-1697(199803/04)7:2<101::aid-jsc332>3.0.co;2-6

Ward RH. Redd AJ. Valencia D. 1993. Genetic and linguistic differentiation in Americas. Proc. Natl. Acad. Sci. USA. 90:10663-10667. DOI: 10.1073/pnas. 90.22.10663 .

West B. Zhou BX. (1988). Did chickens go north? New evidence for domestication. Journal of archaeological science, 15(5),515-533. DOI: 10.1016/0305-4403(88)90080-5.

Yakubu A. Bamidele O. Hassan WA. Ajayi FO. Ogundu UE. Alabi O. Sonaiya EB. Adebambo AO. 2019. Farmers’ Choice of genotypes and traits preferences in tropically adapted Chickens in five agro-ecologicalzones in Nigeria. Tropical Animal Health and production. DOI: 10.1007/s11250-019-01993-o.

Downloads

Published

07/01/2022

How to Cite

Okani-Onyejiaka , M. ., OGUNDU , U. E., BOUDALI, S. F., BAMIDELE, O., OGBUEWU, I. P., & ALADI, N. O. (2022). Genetic Diversity of Mitochondrial DNA (mtDNA) D-Loop Sequences in Six Improved Tropically Adapted Chicken Breeds (iTABs) in Imo State, Nigeria. Genetics & Biodiversity Journal, 6(2), 181–200. https://doi.org/10.46325/gabj.v6i2.289

Issue

Section

Original Article