Applying ISSR markers for the genetic analysis of the invasive Atlantic blue crab Callinectes sapidus Rathbun, 1896 (Portunidae) from Ghar El Melh Lagoon (Tunisia)


  • Chaima JEBALI Laboratoire de Recherche Ecosystèmes & Ressources Aquatiques (LR21AGR01), Institut National Agronomique de Tunisie, Département Génie Halieutique et Environnement, 43, Avenue Charles Nicolle, Cité Mahrajène 1082, Tunis, Université de Carthage, Tunisia.
  • Chiheb FASSATOUI Laboratoire de Recherche Ecosystèmes & Ressources Aquatiques (LR21AGR01), Institut National Agronomique de Tunisie, Département Génie Halieutique et Environnement, 43, Avenue Charles Nicolle, Cité Mahrajène 1082, Tunis, Université de Carthage, Tunisia.
  • Mohamed Salah ROMDHANE Laboratoire de Recherche Ecosystèmes & Ressources Aquatiques (LR21AGR01), Institut National Agronomique de Tunisie, Département Génie Halieutique et Environnement, 43, Avenue Charles Nicolle, Cité Mahrajène 1082, Tunis, Université de Carthage, Tunisia.



Genetic diversity, Polymorphism, Tunisian water, Callinectes sapidus, ISSR markers, Atlantic blue crab


The spread of invasive species is one of the most remarkable phenomena caused by human-induced global changes. Management actions that prevent their impacts on native species require knowledge of their ecological and genetic traits. The genetic characteristics of the Atlantic blue crab Callinectes sapidus, collected from the Ghar El Melh lagoon, were examined using inter-simple sequence repeat (ISSR) markers. A total of 30 individuals including 17 females and 13 males were studied. The analysis of data relies on polymerase chain reaction (PCR) amplification of DNA, followed by statistical processing of the resulting PCR products. We quantified the genetic diversity by the percentage of polymorphic loci, the expected heterozygosity and the Shannon information index and we compared them between males and females. Five ISSR primers yielded a total of 50 scored loci, 49 of which were polymorphic at the level of 99% displaying an average percentage of polymorphic loci of 98%. The mean expected heterozygosity and the Shannon information index in combined sex were relatively high and exceeded 0.30 and 0.46, respectively. Overall genetic diversity was found to be different for both genders, with significantly higher expected heterozygosity and Shannon information index values in females than in males. This work is an initial analysis of genetic aspects of the invasion of Atlantic blue crabs in Tunisia using ISSR. The technique has proven to be an excellent alternative for low-cost genetic monitoring focused on the identification and control of this invasive species and could be used in other regions of the Tunisian coasts


Allendorf FW and Lundquist LL 2003. Introduction: population biology, evolution, and control of invasive species. Conservation Biology 17: 24-30. DOI:10.1046/j.1523-1739.2003.02365.x

Archie JW. 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39: 623- 637. DOI:10.1111/j.1558-5646.1985.tb00399.x

Benjamini Y and Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57: 289-300. DOI:10.1111/j.1365-294X.2007.03538.x

Dlugosch KM and Parker IM 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17 (1): 431-449.

Epifanio CE. 2019. Early life history of the blue crab Callinectes sapidus: a review. Journal of Shellfish Research 38: 1-22. DOI:10.2983/035.038.0101

Estoup A. Ravigné V. Hufbauer R. Vitalis R. Gautier M. and Facon B 2016. Is there a genetic paradox of biological invasion? Annual Review of Ecology and Systematics 47: 51-72. DOI:10.1146/annurev-ecolsys-121415-032116

Facon B. Pointier JP. Jarne P. Sarda V. and David P 2008. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Current biology 18 (5): 363-367. DOI;10.1016/j.cub.2008.01.063

Frankham R. 2005. Genetics and extinction. Biological Conservation 126: 131-140. DOI:10.1016/j.biocon.2005.05.002

Feng X. Williams EP. and Place AR 2017. High genetic diversity and implications for determining population structure in the blue crab Callinectes sapidus. Journal of Shellfish Research 36 (1): 231-242. DOI:10.2983/035.036.0100

Hatira S. Fassatoui C. and Romdhane MS 2019. Fine-scale morphological and genetic variability of the invasive species of blue swimming crab Portunus segnis (Forskål, 1775) in the gulf of Gabes (southeastern Tunisia). Cahiers de Biologie Marine 60 (6): 207-218. DOI:10.21411/CBM.A.1D1164DA

Hellmann JJ. Byers JE. Bierwagen BG. and Dukes JS 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22 (3): 534-543. DOI:10.1111/j.1523-1739.2008.00951.x

Hines AH. 2007. Ecology of juvenile and adult blue crabs. In: Kennedy VS, Cronin LE (eds) The blue crab Callinectes sapidus. Maryland Sea Grant College Program, College Park, MD, pp 565-654.

Hulme PE. 2017. Climate change and biological invasions: evidence, expectations, and response options. Biological Review 92 (3): 1297-1313. DOI:10.1111/brv.12282

Katsanevakis S. Poursanidis D. Hoffman R. Rizgalla J. Rothman SB-S. Levitt-Barmats Y. Hadjioannou L. Trkov D. Garmendia JM. Rizzo M. Bartolo AG. Bariche M. Tomas F. Kleitou P. Schembri P.J. Kletou D. Tiralongo F. Pergent C. Pergent G. Azzurro E. Bilecenoglu M. Lodola A. Ballesteros E. Gerovasileiou V. Verlaque M. Occhipinti-Ambrogi A. Kytinou E. Dailianis T. Ferrario J. Crocetta F. Jimenez C. Evans J. Ragkousis M. Lipej L. Borg JA. Dimitriadis C. Chatzigeorgiou G. Albano PG. Kalogirou S. Bazairi H. Espinosa F. Ben Souissi J. Tsiamis K. Badalamenti F. Langeneck J. Noel P. Deidun A. Marchini A. Skouradakis G. Royo L. Sini M. Bianchi CN. Sghaier Y-R. Ghanem R. Doumpas N. Zaouali J. Tsirintanis K. Papadakis O. Morri C. Çinar ME. Terrados J. Insacco G. Zava B. Soufi-Kechaou E. Piazzi L. Ounifi Ben Amor K. Andriotis E. Gambi MC. Ben Amor MM. Garrabou J. Linares C. Fortič A. Digenis M. Cebrian E. Fourt M. Zotou M. Castriota L. Di Martino V. Rosso A. Pipitone C. Falautano M. García M. Zakhama-Sraieb R. Khamassi F. Mannino AM. Ktari MH. Kosma I. Rifi M. Karachle PK. Yapıcı S. Bos AR. Balistreri P. Ramos Esplá AA. Tempesti J. Inglese O. Giovos I. Damalas D. Benhissoune S. Huseyinoglu MF. Rjiba-Bahri W. Santamaría J. Orlando-Bonaca M. Izquierdo A. Stamouli C. Montefalcone M. Cerim H. Golo R. Tsioli S. Orfanidis S. Michailidis N. Gaglioti M. Taşkın E. Mancuso E. Žunec A. Cvitković I. Filiz H. Sanfilippo R. Siapatis A. Mavrič B. Karaa S. Türker A. Monniot F. Verdura J. El Ouamari N. Selfati M. and Zenetos A 2020. Unpublished Mediterranean records of marine alien and cryptogenic species. BioInvasions Records 9: 165-182. DOI:10.3391/bir.2020.9.2.01

Kimura M. and Crow JF. 1964 The number of alleles that can be maintained in a finite population. Genetics 49 (4): 725-738. DOI:10.1093/genetics/49.4.725

Macedo D. Caballero I. Mateos M. Leblois R. McCay S. and Hurtado LA 2019. Population genetics and historical demographic inferences of the blue crab Callinectes sapidus in the US based on microsatellites. PeerJ 7: e7780. DOI:10.7717/peerj.7780

Mancinelli G. Chainho P. Cilenti L. Falco S. Kapiris K. Katselis G. and Ribeiro F 2017. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: distribution, impact and prospective invasion management strategies. Marine Pollution Bulletin 119 (1): 5-11. DOI:10.1016/J.MARPOLBUL.2017.02.050

McMillen-Jackson AL. and Bert TM. 2004. Mitochondrial DNA variation and population genetic structure of the blue crab Callinectes sapidus in the eastern United States. Marine Biology 145 (4), 769-777. DOI:10.1007/s00227-004-1353-3

Nehring S. 2011. Invasion history and success of the American blue crab Callinectes sapidus in European and adjacent waters. In: Galil BS, Clark PF and Carlton JT (eds), In the wrong place-alien marine crustaceans: distribution, biology and impacts, Springer, pp 607-624.

Nei M. 1987. Molecular evolutionary genetics. Columbia university press, New York, USA.

Öztürk RÇ. Terzi Y. Feyzioğlu AM. Şahin A. and Aydın M 2020. Genetic characterization of the invasive Blue crab, Callinectes sapidus (Rathbun, 1896), in the Black Sea. Regional Studies in Marine Sciences 39:101412. DOI:10.1016/j.rsma.2020.101412

Prager MH. Mcconaugha JR. Jones CM. and Geer PJ 1990. Fecundity of blue crab, Callinectes sapidus, in Chesapeake Bay: biological, statistical and management considerations. Bulletin of Marine Science 46: 170-179.

R Core Team, 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: Accessed 1 January 2021.

Ragkousis M. Abdelali N. Azzurro E. Badreddine A. Bariche M. Bitar G. Crocetta F. Denitto F. Digenis M. El Zrelli R. Ergenler A. Fortič A. Gerovasileiou V. Grimes S. Katsanevakis S. Koçak C. Licchelli C. Loudaros E. Mastrototaro F. Mavrič B. Mavruk S. Miliou A. Montesanto F. Ovalis P. Pontes M. Rabaoui L. Sevingel N. Spinelli A. Tiralongo F. Tsatiris A. Turan C. Vitale D. Yalgin F. Yapici S. and Zenetos A 2020. New Alien Mediterranean biodiversity records (October 2020). Mediterranean Marine Science 21: 631-652. DO:10.12681/mms.23673

Roldàn-Ruiz I. Dendauw J. Van Bockstaele E. Depicker A. and De Loose M 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125-134. DOI:10.1023/A:1009680614564

Schubart CD. Deli T. Mancinelli G. Cilenti L. Gil Fernández A. Falco S. and Berger S 2023. Phylogeography of the Atlantic blue crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: determining origins and genetic connectivity of a large-scale invasion. Biology 12: 35. DOI:10.3390/biology12010035

Shaiek M. El Zrelli R. Crocetta F. Mansour L. and Rabaoui L 2021. On the occurrence of three exotic decapods, Callinectes sapidus (Portunidae), Portunus segnis (Portunidae), and Trachysalambria palaestinensis (Penaeidae), in northern Tunisia, with updates on the distribution of the two invasive portunids in the Mediterranean Sea. Bioinvasion Records 10: 158-169. DOI:10.3391/bir.2021.10.1.17

Shannon CE. and Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Uirbana, IL.

Squires HJ. 1990. Decapoda Crustacea of the Atlantic coast of Canada. Canadian Bulletin of Fisheries and Aquatic Sciences 221: 1-532.

Streftaris N. and Zenetos A. 2006. Alien marine species in the Mediterranean-the 100 ‘Worst Invasives’ and their impact. Mediterranean Marine Sciences 7: 87-118. DOI: 10.12681/mms.180

Suaria G. Pierucci A. Zanello PP. Fanelli E. Chiesa S. and Azzurro E 2017. Percnon gibbesi (H. Milne Edwards, 1853) and Callinectes sapidus (Rathbun, 1896) in the Ligurian Sea: two additional invasive species detection made in collaboration with local fishermen. BioInvasions Records 6 (2): 147-151. DOI:10.3391/bir.2017.6.2.10.

Sunnucks P. and Hales DF. 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13: 510-524.

Tsirintanis K. Azzurro E. Crocetta F. Dimiza M. Froglia C. Gerovasileiou V. Langeneck J. Mancinelli G. Rosso A. Stern N. Triantaphyllou M. Tsiamis K. Turon X. Verlaque M. Zenetos A. and Katsanevakis S 2022. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions 17 (3): 308-352. DOI:10.3391/ai.2022.17.3.01

Williams AB. 1974. The swimming crabs of the genus Callinectes (Decapoda, Portunidae). Fisheries Bulletin 72: 685-798.

Williams EP. Feng X. and Place AR 2017. Extensive heteroplasmy and evidence for fragmentation in the Callinectes sapidus mitochondrial genome. Journal of Shellfish Research 36 (1): 263-272. DOI:10.2983/035.036.0129

Yednock BK. and Neigel JE. 2014. An investigation of genetic population structure in blue crabs, Callinectes sapidus, using nuclear gene sequences. Marine Biology 161: 871-886. DOI:10.1007/s00227-013-2387-1

Yeh F. Yang R. and Boyle T 1999 Microsoft window-based freeware for population genetic analysis (POPGENE Ver. 1.32). University of Alberta, Canada.

Zietkiewicz E. Rafalski A. and Labuda D 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183.




How to Cite

JEBALI, C., FASSATOUI, C., & ROMDHANE, M. S. (2023). Applying ISSR markers for the genetic analysis of the invasive Atlantic blue crab Callinectes sapidus Rathbun, 1896 (Portunidae) from Ghar El Melh Lagoon (Tunisia). Genetics & Biodiversity Journal, 7(2), 66–74.



Original Article