Biometrics reveals distinct population of Meliponula ferruginea (Lepeletier, 1841) and Meliponula bocandei (Spinola, 1853) (Hymenoptera, Apidae, Meliponini) in Cameroon-Central Africa
DOI:
https://doi.org/10.46325/gabj.v9i2.434Keywords:
Biometry, stingless bees, Meliponula bocandei, Meliponula ferruginea, CameroonAbstract
The floristic diversity of the western highlands and the bimodal rainfall forest zone of Cameroon make these areas favorable sites for the evolution of stingless bees, including species of the Meliponula genus. In addition to the ecological services they provide, they are the biggest producers of Afro-tropical stingless bee honey, prized for its various therapeutic properties. With the development of meliponiculture, more and more attention is being paid to these insects, but very few studies have been devoted to them. Thus, to improve knowledge of these bees, this study involved 485 worker bees, including 395 of the Meliponula ferruginae species and 90 of the Meliponula bocandei species, collected in 7 Divisions in the western highlands and the bimodal rainfall forest zone. A total of 16 biometric measurements were then taken using a stereo microscope and the classical biometry method. The data obtained were subjected to one-way analysis of variance using XLSTAT 2014 and SPSS 2010 statistical software. With P<0.05, the various results obtained show that for Meliponula ferruginea, all measurements were influenced by locality, with the exception of body length and metatarsal length. On the other hand, in Meliponula bocandei, only the length of the body and the length of the abdomen were influenced by locality. PCA and AFD show that bee populations of each species are made up of three genetic morphotypes. Thus, the results obtained from this biometric study are needed to assess the degree of homogeneity within the population of Meliponula bocandei and Meliponula ferruginea in these areas, which will be used during the domestication process of these bees, particularly when selecting colonies for multiplication.
References
Ali H., Abubakar H. M., Majid M., Muhammad N., Lim S.Y. 2020. In vitro diabetic activity of stingless bee honey from different botanical origins. Food Research 4(5). 1421-1426. https://doi.org/10.26656/fr.2017.4(5).411
Araujo E. D., Costa. M., Chaud-Netto J., Fowler H.G. 2004. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference range and possible ecological implications. Brazilian Journal of Biology. 64 (3): 563-568. https://doi.org/10.1590/S1519-69842004000400003
Ávila S., Hornung P.S., Teixeira G.L., Malunga L.N., Apea-Bah F.B., Beux M.R., Ribani R.H. 2019. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Research International. 123. 1-10. https://doi.org/10.1016/j.foodres.2019.01.068
Bassindale R., Matthews L.H. 1955. The biology of the Stingless Bee Trigonu (Hypotrigona) gribodoi Magretti (Meliponidae). In Proceedings of the Zoological Society of London (Vol. 125. No. 1. pp. 49-62). Oxford. UK: Blackwell Publishing Ltd. https://doi.org/10.1111/j.1096-3642.1955.tb00591.x
Biluca F.C., Da Silva B., Caon T., Mohr E.T.B., Vieira D.E.M., Costa A.C.O. 2020. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International. 129. 108756. https://doi.org/10.1016/j.foodres.2019.108756
Cockburn C.L., Kwapong P.K., Wubah D.A., Wubah. J. 2013. Shelf-life and Variances in Antimicrobial Properties of Honey from Meliponula bocandei and Meliponula ferruginea in Central Ghana. Journal of Young Investigators. 25(1). 10-14. https://www.researchgate.net/profile/Daniel-Wubah/publication/263379251
Combey R., Teixeira J. S. G., Bonatti V., Kwapong P., & Francoy T. M. 2013. Geometric morphometrics reveals morphological differentiation within four African stingless bee species. Annals of Biological Research. 4(11). 93-103. http://www.scholarsresearchlibrary.com
Cortopassi-Laurino M., Imperatriz-Fonseca V.L., Roubik D.W., Dollin A., Heard. T., Aguilarf I., Venturierig G.C., Eardley C., Nogueira-Netoa P. 2006. Global meliponiculture: challenges and opportunities. Apidologie 37: 275-292. https://doi.org/10.1051/apido:2006027
Divya K. 2016. Morphometric variations of stingless bees in southern Kerala and assessment of honey quality. Master of Science in agriculture. Department of Agricultural entomology college of Agriculture Vellayani. Thiruvananth Apuram-695522 Kerala India. http://14.139.185.57:8080/jspui/bitstream/123456789/1179/1/173586.pdf
Eardley C.D. 2004. Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). African Plant Protection. 34P. https://hdl.handle.net/10520/EJC87785
Greenleaf S.S., Williams N.M., Winfree R., Kremen C. 2007. Zones d’alimentation des abeilles et leur relation avec la taille du corps. Oecologie. 153. 589-596 https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.
Grula C. C., Rinehart J. P., Greenlee K. J., Bowsher J. H. 2021. L'allométrie de la taille du corps a un impact sur la morphologie liée au vol et les taux métaboliques chez l'abeille solitaire Megachile rotundata. Journal of Insect Physiology, 133. 104275. https://doi.org/10.1016/j.jinsphys.2021.104275
Grüter C. 2020. Stingless Bees: Thier Behavior, Ecology and Evolution. School of biology sciences. University of Bristol. Bristol. UK. 385p. https://books.google.com//
Hartfelder K., Makert G. R., Judice C. C., Pereira G. A., Santana W. C., Dallacqua R., Bitondi M., M. 2006. Mécanismes physiologiques et génétiques sous-jacents au développement des castes. à la reproduction et à la division du travail chez les abeilles sans dard. Apidologie, 37 (2). 144-163. https://doi.org/10.1051/apido:2006013
Héger M., Noiset P., Nkoba K., Vereecken N.J. 2023. Connaissances écologiques traditionnelles et utilisations non alimentaires du miel d'abeille sans dard dans la dernière poche de forêt tropicale humide du Kenya. Journal of Ethnobiologie Ethnomédecine 19. 42. https://doi.org/10.1186/s13002-023-00614-3
Hepburn H. R., Radloff S. E., Verma S. and Verma L. R. 2001. Morphometric analysis of Apis cerana Genetic differentiation in Melipona beecheii, 257 populations in the southern Himalayan region. Apidologie. 32: 435–447. https://doi.org/10.1051/apido:2001108
Hrncir M., Jarau S., Barth F.G. 2016. Stingless bees (Meliponini): senses and behavior. Journal of Comparative Physiology A. 202. 597-601. https://doi.org/10.1007/s00359-016-1117-9
Kerfoot W. B. 1967. Correlation between ocellar size and the foraging activities of bees (Hymenoptera; Apoidea). The American Naturalist. 101(917). 65-70. https://www.jstor.org/page-scan-delivery/get-page-scan/2459217/0
Kerr W.E., Da Cunha R.A. 1976. Taxonomic position of two fossil social bees (Apidae). Revista de Biología Tropical. 24(1). 35-43. https://doi.org/10.1007/BF00055470
Kiatoko N., Van L.F., Raina. S.K. 2018. Forest degradation influence nesting site selection of Afro-tropical stingless bees’ species in a tropical rain forest. Kenya. African Journal of Ecology. 56 (3). 669-674. https://doi.org/10.1111/aje.12491
Macharia J., Gitonga L., Kutima H. 2009. Status and Prospects of Stingless Bee-keeping in Kenya. Agricultural Innovations for Sustainable Development. 1(1). 97-103. http://atpsnet.org/wp-content/uploads/2017/05/agri_innovations_v1.pdf#page=99
Maleszka R. 2018. Au-delà de la royalactine et une explication de la plasticité phénotypique chez les abeilles mellifères par un inducteur principal. Biologie des communications . 1 (1). 8. https://doi.org/10.1038/s42003-017-0004-4
May-Itzá W., de J., Quezada-Euán J. J.G., Ayala R., De la Rúa P. 2012. Morphometric and genetic analyses differentiate Mesoamerican populations of the endangered stingless bee Melipona beecheii (Hymenoptera: Meliponidae) and support their conservation as two separate units. J. Insect Conserv. 16 . 723-731 https://doi.org/10.1007/s10841-012-9457-4
Meda A., Lamien C.E., Millogo J., Romito M., Nacoulma O.G. 2004. Utilisations thérapeutiques du miel et des larves d'abeilles domestiques au centre du Burkina Faso. J Ethnopharmacol. 95: 103-7 https://doi.org/10.1016/j.jep.2004.06.016
Michener C.D. 2007. The bees of the world. Johns Hopkins University Press. Baltimore. Maryland. 2nd (ed) 816p. books.google.com
Moussaoui K., Osmani F. 2023. Contributions à la prévalence de certaines pathologies apicoles chez l’abeille domestique Apis mellifera intermissa (Thèse de Doctorat. Université Mouloud Mammeri). https://dspace.ummto.dz/handle/ummto/23727
Munyuli T. 2014. Influence of functional traits on foranging behaviour and pollination efficiency of wild social and solitary bees visiting coffee (coffee canephora) flowers in Uganda.Grana. 53:1. 69-89. https://doi.org/10.1080/00173134.2013.853831
Ndungu N., Nkoba K., Ciosi M., Salifu D., Nyansera D., Masiga D., Suresh R.K. 2017. Identification of stingless bees (Hymenoptera: Apidae) in Kenya using morphometrics and DNA barcoding. Journal of Apicultural Research. 56(4). 341-343pp. https://doi.org/10.1080/00218839.2017.1327939
Ngaini Z., Hussain H., Elabo S.E., Wahi R., Farooq S. 2021. Chemical profiling. biological properties and environmental contaminants of stingless bee honey and propolis. Journal of Apicultural Research. https://doi.org/10.1080/218839.2021.1948745
Njoya T.M. 2009. Diversity of stingless bees in Bamenda Afromontane Forests Cameroon: Nest architecture, behaviour and labour calendar. Dissertation submitted to Rheinischen Friedrich Wilhelms-University Zu Bonn. 148p. http://hss.ulb.uni-bonn.de/diss_online
Nkoba K. 2012. Distribution. behavioural biology. rearing and pollination efficiency of five stingless bee species (Apidae: Meliponinae) in Kakamega forest. Kenya. Kenyatta University; Nairobi. Kenya. https://ir-library.ku.ac.ke/bitstreams/85bf3ff6-1cca-48e0-81f8-0fe107721ee5/download
Pauly A., Vereecken N.J., Meliponarium A.A. 2011. Meliponinae d’Afrique. Atlas Hymenoptera. Laboratoire de Zoologie de l’Université de Mons and Unité d’Entomologie fonctionnelle et évolutive de la Gembloux Agro Bio Tech. Mons and Gembloux. Belgium. http://www.atlashymenoptera.net/page.aspx??ID=121
Pereboom J.J.M., Biesmeijer. JC. 2003. Thermal constaints for stingless bee foragers: the importance of body sice and coloration. Oecologia 137:42-50. https://doi.org/:10.1007/s00442-003-1324-2
Robinson G.E. 2009. Division of labor in insect societies. Encyclopedia of Insects. 297-299. https://doi.org/10.1016/B978-0-12-374144-8.00086-2
Roubik D.W. 2006. Stingless bee nesting biology. A review: Apidologie. 37: 124-143pp. https://doi.org/10.1051/apido:2006026
Ruttner F. 1988. Biogeography and Taxonomy of Honeybees. Springer-Verlag. Berlin. Heidelberg. RFA. In https://books.google.fr/books/publisher/content?id=d1rmCAAAQBAJ&hl=fr&pg=PR4&img=1&zoom=3&sig=ACfU3U1N1SVkyAttmM4Q6eJbEFHUlW1UvA&w=1280
Toledo-Hernández E., Peña-Chora G., Hernandez-Velazquez V.M., Lormendez C.C., Toribio-Jiménez J., Romero-Ramírez Y., León-Rodríguez R. 2022. The stingless bees (Hymenoptera: Apidae: Meliponini): a review of the current threats to their survival. Apidologie. 53(1). 8. https://doi.org/10.1007/s13592-022-00913-w
Toullec A.N.K. 2008. Abeille noire (Apis mellifera mellifera) Historique et sauvegarde. Thèse de Doctorat Vétérinaire, Faculté de Médecine de Créteil. 168 p. https://cpie-littoral-basque.eu/lib/pdf/450070.pdf
Vit P., Vargas O., Lopez T., Valle F. 2015. Meliponini biodiversité et utilisations médicinales du miel de pot de la province d'El Oro en Équateur. Emir J Food Agric. 27:502. https://doi.org/10.1007/978-3-319-61839-5_30
Wilson E.O. 1990. Biology and the social sciences. Zygon. 25(3). 245-262. https://doi.org/10.1111/j.1467-9744.1990.tb00791.x
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.