Genetic assignment of Tunisian meat sheep breeds and the effect of the reduction of microsatellites number on their structure assessment

Authors

  • Samia KDIDI Livestock and Wildlife Laboratory, Arid Lands Institute, Route Djorf km 22-4119 Medenine, University of Gabes, Tunisia
  • Jorge HUGO CALVO Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)- Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Zaragoza, Spain
  • Semir Bechir Suheil GAOUAR Laboratory of applied genetic in agriculture, ecology and public health (GenApAgiE), SNV/STU Faculty, Abu Bekr Belkaid University, Tlemcen, Algeria.
  • Mohamed DBARA Livestock and Wildlife Laboratory, Arid Lands Institute, Route Djorf km 22- 4119 Medenine, University of Gabes, Tunisia
  • Slah BELHADJ Office de l’Elevage et des Pâturages 30, rue Alain Savary, 1002 Tunis, Tunisia
  • Ezzeddine BELFEKIH Office de l’Elevage et des Pâturages 30, rue Alain Savary, 1002 Tunis, Tunisia
  • Mohamed HAMMADI Livestock and Wildlife Laboratory, Arid Lands Institute, Route Djorf km 22- 4119 Medenine, University of Gabes, Tunisia.;
  • Touhami KHORCHANI Livestock and Wildlife Laboratory, Arid Lands Institute, Route Djorf km 22- 4119 Medenine, University of Gabes, Tunisia
  • Mohamed Habib YAHYAOUI Livestock and Wildlife Laboratory, Arid Lands Institute, Route Djorf km 22- 4119 Medenine, University of Gabes, Tunisia.

DOI:

https://doi.org/10.46325/gabj.v7i1.325

Keywords:

Genetic assignment, microsatellites, breeds, sheep, structure, Tunisia

Abstract

Microsatellite markers succeeded to reveal different population genetic parameters. The present work aimed to investigate the genetic assignment and structure of the Tunisian meat sheep breeds. (Barbarin (BB), Western Thin Tail (WTT), and Black Thibar (BT)).The current study also opted for testing different methods of assignment implemented in several programs for genetic identification and traceability purposes of these breeds and for assessing whether these markers could be useful for an efficient genetic assignment of these ovine breeds. The genotypes of 90 animals (30 samples per breed) were typed for 22 microsatellite markers. All the loci displayed a high polymorphic content (between 0.561 and 0.884). The GENECLASS2 and the WHICHLOCI programs were used to choose the most powerful markers (17 microsatellites). The FLOCK program was more efficient with 22 markers. Genetic differentiation tests (FST = 0.0127) and assignment of individuals to populations revealed the highest level of misassignment in BB and WTT breeds, while the BT breed revealed the highest percentage of individuals assigned to itself. The reduction of the number of microsatellites (from 22 to 17) does not affect the assessment of the genetic structure of Tunisian sheep breeds. This result shed the light on the importance of the shift towards lambs with thin tails imposed by the butchers. It also revealed the unfitness of microsatellite markers in genetic identification analysis for studied sheep breeds.

References

Banks M. A. Eichert, W. 2000. WHICHRUN (version 3.2): a computer program for population assignment of individuals based on multilocus genotype data. Journal of Heredity, 91(1), 87-89. doi:10.1093/jhered/91.1.87.

Banks M. A. Eichert W. Olsen J. B. 2003. Which genetic loci have greater population assignment power?. Bioinformatics, 19(11), 1436-1438. doi:10.1093/bioinformatics/btg172

Bedhiaf-Romdhani S. Djemali M. Zaklouta M. Iniguez L. 2008. Monitoring crossbreeding trends in native Tunisian sheep breeds. Small ruminant research, 74(1-3), 274-278. doi:https://doi.org/10.1016/j.smallrumres.2007.07.008

Belkhir K. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. http://www. genetix. univ-montp2. fr/genetix/genetix. htm. doi:https://kimura.univ-montp2.fr/genetix/

Bramante A. Cecchi F. Ciani E. Castellana E. D’Andrea M. S. Pilla F. Ciampolini R. 2011. The breed traceability of sheep meat by using molecular genetics methods: preliminary results. Italian Journal of Food Safety, 1(1), 41-44. doi: https://doi.org/10.4081/ijfs.2011.749

Calvo JH. Alvarez-Rodriguez J. Marcos-Carcavilla A. Serrano M. Sanz A. 2011. Genetic diversity in the Churratensina and Churralebrijana endangered Spanish sheep breeds and relationship with other Churra group breeds and Spanish mouflon. Small ruminant research, 95(1), 34-39.

Chalh A. El Gazzah M. Djemali M. Chalbi N. 2007. Genetic and phenotypic characterization of the Tunisian Noire De Thibar lambs on their growth traits. Journal of Biological Sciences, 7, 1347-1353. doi:10.3923/jbs.2007.1347.1353.

Dalvit C. De Marchi M. Dal Zotto R. Gervaso M. Meuwissen T. Cassandro M. 2008. Breed assignment test in four Italian beef cattle breeds. Meat Science, 80(2), 389-395. doi: https://doi.org/10.1016/j.meatsci.2008.01.001

Djemali M. Romdhani S. Wurzinger M. Iniguez L. 2006. Impact of butchers and market trends on the integrity of small ruminant genetic resources. In: Book of Abstracts of the 57th Annual Meeting of the European Association for Animal Production, van der Honing, Y. (Ed.). Wageningen Academic Pub, Antalya, Turkey, 17-20 September 2006

Dray S. Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of statistical software, 22, 1-20.

Duchesne P. Turgeon J. 2012. FLOCK provides reliable solutions to the “number of populations” problem. Journal of Heredity, 103(5), 734-743. doi:https://doi.org/10.1093/jhered/ess038

Excoffier L. Laval G. Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary bioinformatics, 1, 117693430500100003. doi: https://doi.org/10.1177/117693430500100003

Goudet J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of heredity, 86(6), 485-486. doi: doi:https://doi.org/10.1093/oxfordjournals.jhered.a111627

Hoffmann R. 2000. Country of origin–a consumer perception perspective of fresh meat. British food journal, 102(3), 211-229. doi:https://doi.org/10.1108/00070700010332304.

Iaccarino T. Di Monaco R. Mincione A. Cavella S. Masi P. 2006. Influence of information on origin and technology on the consumer response: The case of soppressata salami. Food Quality and Preference, 17(1-2), 76-84. doi:https://doi.org/10.1016/j.foodqual.2005.08.005

Iñiguez L. 2006. Characterization of small ruminant genetic resources in Central Asia, the Caucasus, West Asia and North Africa. In International Workshop “Options and Strategies for the Conservation of Farm Animal Genetic Resources” (p. 34).

Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405.

Kdidi S. Calvo JH. González-Calvo L. Sassi MB. Khorchani T. Yahyaoui MH. 2015. Genetic relationship and admixture in four Tunisian sheep breeds revealed by microsatellite markers. Small Ruminant Research,131, 64-69.

Langella O. 1999. Populations 1.2.28: Population genetic software. CNRS UPR9034, http://bioinformatics.org/~tryphon/populations/ Google Scholar

Lenstra J. A. 2005. Primary identification: DNA markers for animal and plant traceability. In: Improving Traceability. In Food Processing and Distribution, Smith I., Furness T. (eds). Woodhead Publ., Cambridge, pp. 147 – 164.

Lenstra J. A. 2006. DNA markers for animal and plant traceability (pp. 147-164). Woodhead Publishing, Cambridge, UK.

Letunic I. Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic acids research, 49(W1), W293-W296.

Manel S. Gaggiotti OE. Waples RS. 2005. Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution, 20(3), 136-142. doi:https://doi.org/10.1016/j.tree.2004.12.004

Marshall TC. Slate JB. Kruuk LEB. Pemberton JM. 1998. Statistical confidence for likelihood‐based paternity inference in natural populations. Molecular ecology, 7(5), 639-655. doi:https://doi.org/10.1046/j.1365-294x.1998.00374.x

Mateus J. C. Russo-Almeida P. A. 2015. Traceability of 9 Portuguese cattle breeds with PDO products in the market using microsatellites. Food Control, 47, 487-492. doi:https://doi.org/10.1016/j.foodcont.2014.07.038

Nakamura A. Kino K. Minezawa M. Noda K. Takahashi H. 2006. A method for discriminating a Japanese chicken, the Nagoya breed, using microsatellite markers. Poultry science, 85(12), 2124-2129. doi:https://doi.org/10.1093/ps/85.12.2124

Neuwirth E. Neuwirth M. E. 2014. Package ‘RColorBrewer’. ColorBrewer Palettes.

OEP. 2014. http://www.oep.nat.tn/index.php/fr/donnees-sectorielles/41-productions. Accessed June 25, 2014.

Oh JD. Song KD. Seo JH. Kim DK. Kim SH. Seo KS. Lim HT. Lee JB. Park HC. Ryu YC. Kang MS. Cho S. Kim E.S. Choe H.S. Kong H.S. Kang M. S. 2014. Genetic traceability of black pig meats using microsatellite markers. Asian-Australasian journal of animal sciences, 27(7), 926. doi:10.5713/ajas.2013.13829.

ONAGRI (Observatoire National de l'Agriculture en Tunisie), 2012. La production animale en 2012. http://www.onagri.tn/statistiques.

Paetkau D. Calvert W. Stirling I. Strobeck C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molecular ecology, 4(3), 347-354. doi: https://doi.org/10.1111/j.1365-294X.1995.tb00227.x.

Paradis E. Claude J. Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290.

Piry S. Alapetite A. Cornuet J. M. Paetkau D. Baudouin L. Estoup A. 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of heredity, 95(6), 536-539. doi: https://doi.org/10.1093/jhered/esh074.

Quagrainie KK. Unterschultz J. Veeman M. 1998. Effects of product origin and selected demographics on consumer choice of red meats. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 46(2), 201-219. doi: https://doi.org/10.1111/j.1744-7976.1998.tb00363.x.

Rannala B. Mountain JL. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences, 94(17), 9197-9201. doi: https://doi.org/10.1073/pnas.94.17.9197.

Reynolds J. Weir BS. Cockerham CC. 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics, 105(3), 767-779.

Rikimaru K. Takahashi H. 2007. A method for discriminating a Japanese brand of chicken, the Hinai-jidori, using microsatellite markers. Poultry Science, 86(9), 1881-1886. doi: https://doi.org/10.1093/ps/86.9.1881.

Rogberg-Muñoz A. Wei S. Ripoli MV. Guo BL. Carino MH. Castillo N. Villegas EE. Castagnasoa EE. Lirón JP. Morales Duranda HF. Meluccic L.Villarrealc E. Peral-García P. Wei YM. Giovambattista G. 2014. Foreign meat identification by DNA breed assignment for the Chinese market. Meat science, 98(4), 822-827. doi: https://doi.org/10.1016/j.meatsci.2014.07.028.

Shackell GH. Tate ML. Anderson R M. 2001. Installing a DNA-based traceability system in the meat industry. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics (Vol. 14, pp. 533-536).

Verbeke W. Pérez-Cueto FJ. de Barcellos MD. Krystallis A. Grunert KG 2010. European citizen and consumer attitudes and preferences regarding beef and pork. Meat science, 84(2), 284-292. doi: https://doi.org/10.1016/j.meatsci.2009.05.001.

Weir BS. Cockerham CC. 1984. Estimating F‐statistics for the analysis of population structure. evolution, 38(6), 1358-1370.

Downloads

Published

01/22/2023

How to Cite

KDIDI , S., HUGO CALVO , J. ., GAOUAR, S. B. S. ., DBARA, M. ., BELHADJ, S. ., BELFEKIH, E. ., HAMMADI, M. ., KHORCHANI , T. ., & YAHYAOUI, M. H. . (2023). Genetic assignment of Tunisian meat sheep breeds and the effect of the reduction of microsatellites number on their structure assessment. Genetics & Biodiversity Journal, 7(1), 170–183. https://doi.org/10.46325/gabj.v7i1.325

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 3 4 5 6 > >>