Comparative study of testicular function in two races of Gallus gallus domesticus: the local and commercial race

Authors

  • Yamina ZATRA Nature and Life Sciences Faculty, Saad Dahlab University of Blida (USDB 1), Blida, Algeria.
  • Louiza DEROUICHE ESSAIA
  • Houria OUENNES University of Mohamed Cherif Messaadia Souk ahras, 41.000, Algeria.

DOI:

https://doi.org/10.46325/gabj.v7i2.379

Keywords:

Farm Rooster, production cock, breeding rooster, Testicles, Germline, Testosterone

Abstract

Poultry production in Algeria is experiencing real development in order to ensure self-satisfaction with table eggs and white meat. As a result, poultry farming has moved from a traditional production system to an intensive production system. The present study aims primarily to compare the testicular activity in two races of Gallus gallus domesticus, namely the local race (with a traditional diet) and the commercial race (with an improved intensive diet). In order to carry out this work, twenty-four adult male chickens (cocks or roosters) were divided into three batches, with eight chickens in each batch. The first batch contains chicken intended for broiler production, the second batch includes male chicken for reproduction, and the third one comprises local farm male chickens. Once the animals are bled, the blood is collected in heparinized tubes in order to measure testosterone levels. The reproductive organs, which are composed of the testicles, epididymides, and vas deferens, are then removed, weighed, and fixed in 10% formalin, for a topographic histological study. The results obtained showed that the weight of the testicle, epididymis, and vas deferens of farm and reproductive male chickens is higher than that of the meat rooster. In addition, it turned out that the structural aspect of the testicle was different from one batch to the other. Indeed, in farm and reproductive male chickens, the seminiferous tubules of the testicles are quite voluminous, and the spermatozoa are released into the lumen of the seminiferous tubules, with the presence of all the cell types of the germline in the seminiferous epithelium. It should also be added that, in male chickens grown for meat production, the seminiferous tubules are of reduced size, with a central lumen devoid of spermatozoa. In addition, the testosterone in farm and reproductive male chickens is higher than that of male chickens grown for meat production. It should be noted that rapid growth, induced by intensive feeding, should lead to obesity in selected individuals. Moreover, the reduction of the photoperiod is often accompanied by an alteration in reproductive capacities.

References

Al-Tememy, H. S. A. (2010). Histological study of testis in quail (Coturnix coturnix japonica). Al-Anbar Journal Veterinary Science. 3: 36-44.

Bakst, M. R.; Akuffo V.; Trefil P. and Brillard J. P. (2007). Morphological and histochemical characterization of the seminiferous epithelial and Leydig cells of the turkey. Animal. Reproduction Science. 97 : 303-313.

Benoît, J. (1936). Facteurs internes et externes de l'activité sexuelle 1 Stimulation par la lumière de l'activité sexuelle chez le canard et la cane domestique. Bull. Biology. 70: 487-534.

Berghiche, A.; Khenenou T.; Belgharbi H. and Labied I. (2020). The Production Systems, Phenotypic and Morphometric Diversity of the Local Hens "Gallus gallus domesticus” & quot; in Eastern Algeria. Revista Electronica De Veterinaria. 21(2), 1-37.

Bissonnette, T. H. (1933). Inhibition of the stimulating effect of red light on testis activity in Sturnus vulgaris (Starling) by a restricted diet. Bull. Biology. 65: 452-468.

Boudali, S. F.; Al-Jumaili, A. S.; Bouandas, A.; Mahammi, F. Z.; Tabet Aoul, N.; Hanotte, O. and Gaouar, S. B. S. (2020). Maternal origin and genetic diversity of Algerian domestic chicken (Gallus gallus domesticus) from North-Western Africa based on mitochondrial DNA analysis. Animal. Biotechnology. 13: 1-11.

Briere, S.; Brillard, J. P.; Panheleux, M. and Froment, P. (2011). Alimentation, fertilité et bien-être des oiseaux reproducteurs domestiques : des liens complexes. I.N.R.A. Production. Animal. 24 (2) : 171-180.

Carrie-Lemoine, J. ; Garnier, D. H. and Richard Yris, A. M. (1983). Evolution des taux plasmatiques de testostérone et de delta 4-androstènedione chez le coq Hubbard en croissance [Variations of plasma levels of testosterone and delta 4-androstenedione in growing Hubbard cockerels]. C R Seances Acad Sci III. 296 (15): 701-718.

Cecil, H. C. (1981). Effects of dietary protein on body weight and reproductive performance of male turkeys fed low protein diets during the breeder period. Poultry. Science. 61: 1866-1872.

Czubaszek, M.; Andraszek, K. and Banaszewska, D. (2019). Influence of the age of the individual on the stability of boar sperm genetic material. Theriogenology 15; 147: 176-182.

De Revier, M. and Brillard, J. P. (1974). Le développement testiculaire chez le coq : Influence de la durée quotidienne d’éclairement sous photopériodes constantes. Annales de biologie animale, biochimie, biophysique. 14 : 591- 600.

De Revier, M. and Brillard J. P. (1977). Le développement testiculaire chez le coq : action de variations progressives de la durée quotidienne d’éclairement. Annales de biologie animale, biochimie, biophysique. 17 : 179-186.

De Reviers, M. ; Richetin, C. and Brillard, J. P. (1971). Le développement testiculaire chez le coq -II- Morphologie de l’épithélium séminifère et établissement de la spermatogénèse. Annales de biologie animale, biochimie, biophysique. 11(4) : 531-546.

Deviche, P.; Hurley, L. L. and Bobby Fokidis, H. (2011). Avian testicular structure, function, and regulation. Hormone. Reproduction. Vertebre., Birds, Elsevier. 4 : 27-70.

Educagri, (2005). Reproduction des animaux d’élevage. Anatomie. Physiology. Reproduction., Dijon, 407p.

Ferrah, A. (2010). La filière avicole Algérienne : Diagnostic et stratégies. Cahier de l’I.N.A., Alger, 11p.

Fotsa, J. C. ; Pone, K. D., Manjeli, Y. and Ngou Ngoupayou, J. D. (2007). The state of Cameroon rural chickens: production and development perspectives for poverty alleviation. Ghanaian Jornal. Animal. Science. vol. 2 & 3 : 175-180.

Fotsa, J. C. (2008). Caractérisation des populations de poules locales (Gallus gallus) au Cameroun. Thèse de doctorat, Agroparistech, Paris, p. 301.

Furuta, G. T.; Turner, J. R.; Taylor, C. T.; Hershberg, R. M.; Comerford, K.; Narravula, S.; Podolsky, D. K. and Colgan, S. P. (2001). Hypoxia-inducible factor 1- dependent trefoil factor protects barrier function during hypoxia. Journal. Experience. Medecine. USA, 193(9) : 1027-1034.

Geraert, P.A. (1991). Métabolisme énergétique du poulet de chair en climat chaud. I.N.R.A. Prouction. Animal. Paris, 4(3): 257-267.

Harrison, P. C.; Latshaw, J. D.; Casey, J. M. and Mcginnis, J. (1970). Influence of decreased length of different spectral photoperiods on testis development of the fowl. Journal. Reproduction. Fertilité. 22: 269-275.

Haseeb, A.; Bai, X.; Vistro, W. A.; Tarique, I.; Chen, H. and Yang, P. (2019). Characterization of in vivo autophagy during avian spermatogenesis1. Poultry Science. 98, 5089-5099.

Hocking, P.; Waddington, D.; Walker, D. and Gilbert, A. (1989). Control of the development of the ovarian follicular hierarchy in broiler breeder pullets by food restriction during rearing. British. Poultry. Science. 30: 161-173.

Hocking, P. M. (1988). Effect of restriction body weight gain or limiting the photoperiod during rearing on sexual maturity, viability and semen production in large white turkey males. British. Poultry. Science. 29: 531-544.

Hocking, P. M. (2010). Developments in poultry genetic research 1960-2009. British. Poultry. Science. 51 (1): 44-51.

Hocking, P. M. (1991). Effects of controlling body weight on the semen production of large white turkey males. British. Poultry. Science. 33: 211-218.

Ingkasuwan, P. and Ogasawara, F. X. (1966). The effect of light and temperature and their interaction on the semen production of White Leghorn males. British. Poultry. Science. 45 : 1199-1206.

Kaci, A. (2014). Les déterminants de la compétitivité des entreprises avicoles algériennes. Thèse de doctorat, E.N.S.A., El Harrach, Alger, 243p.

Kaci, A. (2015). La filière avicole algérienne à l'ère de la libéralisation économique. Cah Agric. 24 : 151-60.

Larivière, J. M. and Leroy, P. (2008). Conservation et valorisation de la diversité des ressources génétiques du poulet en Europe : initiatives et perspectives. Annale de Médecine Vétérinaire. 152 : 203-220.

Leroy, P.; Thewis, A. and Huart, A. (2003). Troupeaux et cultures des tropiques ; dossier spécial volaille, Kinshasa. Centre agronomique et vétérinaire tropicale de Kinshasa. 96 p.

Lin, M. and Jones, R. C. (1993). Spermiogenesis and spermiation in the Japanese quail (Coturnix coturnix japonica). Journal of Anatomy. 183 (3): 525-535.

Mahammi, F. Z.; Gaouar, S. B.; Laloë, D.; Faugeras, R.; Tabet-Aoul, N.; Rognon, X.; Tixier-Boichard, M. and Saidi-Mehtar, N. (2016). A molecular analysis of the patterns of genetic diversity in local chickens from western Algeria in comparison with commercial lines and wild jungle fowls. Animal Breeding and Genetic. 133(1): 59-70.

Malvika, S.; Ghosh, P. R.; Dhar, B.; Devi, N. N.; Paul, R.; Halder, A. and Ghosh, S. K. (2019). Genetic status of indigenous poultry (red jungle fowl) from India. Gene. 705, 77-81.

Masyitha, D.; Akmal, M.; Gholib, G. and Wahyuni, S. (2021). Morphoanatomy and Gonadosomatic Index (GSI) of Testis of Turkey (Meleagrisgallopavo) at Different Ages. In Proceedings of the 2nd International Conference on Veterinary, Animal, and Environmental Sciences, ICVAES, Banda Aceh, Indonesia, 22–23 October 2020; Atlantis Press: Amsterdam, The Netherlands; 140-142.

Mfoundou, J. D.; Guo, Y.; Yan, Z. and Wang, X. (2022). Morpho-Histology and Morphometry of Chicken Testes and Seminiferous Tubules among Yellow-Feathered Broilers of Different Ages. Veterinary Science. 9, 485.

Moran, E. T.; Ferket, P. R.; Etehes, R. J. and Blaekman, J. R. (1983). Influence of a low plane of nutrition during sexual development on subsequent reproductive performance of small white breeder toms. Poultry Science. 62 : 1093-1100.

Moula, N. ; Antoine-Moussiaux, N. ; Farnir, F. ; Detilleux, J. and Leroy, P. (2009). Réhabilitation socioéconomique d’une poule locale en voie d’extinction : la poule Kabyle (Thayazit lekvayel). Annales de Médecine Vétérinaire. 153: 178-186.

Ngou Ngoupayou, J. D. (1990). Country report on smallholder rural poultry production in Cameroon. In: CTA seminar proceedings, small holder rural poultry production. Thessalonica, Greece. 2: 39-47.

Nicaise, C. (2015). Système génital male. SVETB303, p9.

Nir, I.; Waites, G. M. and Cunningham, F. J. (1975). Obesity induced by force-feeding and accompanying changes in body temperature and fertility in the male domestic fowl. British Poultry Science. 16: 505-515.

Ouennes, H.; Afri Bouzebda, F.; Bouzebda, Z. ; Majdoub, S. ; Djaout, A. and Smadi, A. M. (2019). The characterization of Post-Mortem Sperm of Local Chicken Cocks in Eastern Algeria. Journal of World 's Poultry Research. 9(2) : 59-67.

Ouennes, H. (2021). Utilisation du sperme epididymaire en vue de la mise en place d’une banque génétique. PhD thesis in veterinary science. University of Souk Ahars. Algeria.

Pichereau, A. (2012). Les techniques de prélèvement et d’insémination artificielle chez les oiseaux. Thèse de doctorat, E.N.V. Alfort, 83p.

Sahraoui, N. ; Brahim Errahmani, M. ; Ammi-Baaziz, D. ; Hezil, N. ; Bennadji, M. A. ; Boulariah, H. ; Chaouadi, D. ; Hornick, J. L. and Guetarni, D. (2015). Effet de l’extrait végétal de Yucca Schidigera sur l’excrétion oocystale chez le poulet de chair. Revue Marocaine des Sciences Agronomiques et Vétérinaires. 3 (2) : 53-57.

Santiago-Moreno, J. and Blesbois, E. (2020). Functional Aspects of Seminal Plasma in Bird Reproduction. International Journal of Molecular Sciences. 21(16), 5664.

Sedqyar, M.; Weng, Q.; Watanabe, G.; Kandiel, M. M. M.; Takahashi, S.; Suzuki, A. K.; Taneda, S. and Taya, K. (2008). Secretion of inhibin in male Japanese quail (Corturnix japonica) from one week of age to sexual maturity. Journal of Reproduction and Développement. 54(2): 100-106.

Sonaiya, E. B. and Swan, S. E. J. (2004). Production en aviculture familiale : un manuel technique. Organisation des Nations Unies pour l’Alimentation et l’agriculture, FAO/Productions et Santé Animales. Rome, 134 p.

Tamilselvan, S.; Dhote, B. S.; Singh, I.; Mrigesh, M.; Sathapathy, S.; Mahanta, D. and Gross. (2018). Morphology of testes and gonadosomatic index (GSI) of guinea fowl (Numida meleagris). Journal. Entomology. Zoology. Study. 6, 156-159.

Blesbois, E. (2018). Bird Reproduction Overview. In Encyclopedia of Reproduction; Skinner, M.K., Ed.; Academic Press: Cambridge, MA, USA, 6, 579-585.

Van Eekeren, N.; Maas, A.; Staatkamp, H. W. and Verschuur, M. (2006). L’élevage des poulets à petite échelle. Digigraphi, Wageninagen-Pays Bas, 97p.

Walter, J. B. (2007). Reproductive Biology and Phylogeny of Birds: Phylogeny, Morphology, Hormones and Fertilization. Jam. Ed., Enfield, N.H., Sci. Pub., 609p.

Zhang, X.; Yang, W.; Liang, W. ; Wang, Y. ; Zhang, S. (2019). Intensity dependent disruptive effects of light at night on activation of the HPG axis of tree sparrows (Passer montanus). Environmental. Pollution. 249: 904-909.

Zhang, X. Y.; Wen, X. X.; Zhao, L. and He, J. P. (2012). Immunolocalization of Smad 4 protein in the testis of domestic fowl (Gallus domesticus) during postnatal development. Acta. Histochem. 114: 429-433.

Downloads

Published

07/17/2023

How to Cite

ZATRA, Y., DEROUICHE, L., & OUENNES, H. (2023). Comparative study of testicular function in two races of Gallus gallus domesticus: the local and commercial race. Genetics & Biodiversity Journal, 7(2), 151–162. https://doi.org/10.46325/gabj.v7i2.379

Issue

Section

Original Article

Most read articles by the same author(s)