Studying mutations of SARS-Cov-2 different variants (Alpha, Beta, Delta, Gamma, Omicron)

Authors

  • Louiza DEROUICHE ESSAIA
  • Rabia LATRACH
  • Rania SEDDAOUI

DOI:

https://doi.org/10.46325/gabj.v7i1.314

Keywords:

SARS-CoV-2, genes, mutations, variants, phylogenetic

Abstract

Being pushed by natural selection, random genetic drift, gene editions, and receptor immunity response, viruses develop constantly through mutations affecting different genes and leading to genetic diversity and producing new variants. In order to know well how a mutation could have an impact on the possibility of being infected, on transmission, and on aggressivity of SARS-CoV-2 it would be important to study these mutations. To be able to carry out a comparative study between variants and undergone mutations over many countries in the world, we’ve dealt with many genomic sequences that have been rapidly accumulated in the GenBank since January 2020, and published by many laboratories over the world. These sequences allowed us to establish phylogenetical trees using a strong bioinformatic tool, just enhanced to study Covid which is MEGA version 11. Distribution of shifted sequences of different variants over the world within phylogenetical trees shows that the overwhelming majority of detected mutations are accumulated in the 5 known variants Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), Gamma (P.1) et Omicron (B.1.1.529), especially within their most variable genes, structural genes of which are N (Nucleocapsid protein) and S (Spike glycoprotein) added to functional ones ORF (Open Reading Frame : ORF1ab, ORF3a) ; hence, variants holding these mutations are the most dominant and the most infectious this time in the world.

References

Benevento D., Banu Demir A., Giovanetti M., Bianchi M., Angeletti S., Pascarella S., Cauda R., Ciccozzi M., Antonio C., 2020. Evidence for mutations in SARS-CoV-2 Italian isolates potentially affecting virus transmission. J Med Virol ;92(10); P: 2232-2237.

Campbell F., Archer B., Laurenson-Schafer H., Jinnai Y., Konings F., Batra N., Pavlin B., Vandemaele K., Van Kerkhove M. D., Jombart T., Morgan O., le Polain de Waroux O., 2021. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance; Volume 26, Issue 24.

Chen Y., Lieu Q., Guo D., 2021. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 92(4), P: 418-423.

Choi J. Y., Smith D. M., 2021. SARS-CoV-2 Variants of Concern. Yonsei Med. J.; 62(11) P: 961-968.

Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W., 2016. GenBank. Nucleic Acids Research, Volume 44, Issue D1, P: D67–D72.

Derouiche L., Benzayed Y., Belmihoub M., Derouiche F., 2021. A study of genetic variants of SARS-CoV-2 using bioinformatics tools. Genetics and Biodiversity Journal, 6 (1); P: 137-148.

Greaney A.J., Starr T.N., Gilchuk P., Zost S.J., Binshtein E., Loes A.N., Hilton S.K., Huddleston J., Eguia R., Crawford K.H.D., Dingens A.S., Nargi R.S., Sutton R.E., Suryadevara N., Rothlauf P.W., Liu Z., Whelan S.P.J., Carnahan R.H., Crowe Jr J.E., Bloom J.D., 2021. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe, Volume 29, Issue 1; P: 44-57.

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, Volume 395, Issue 10223, P: 497-506.

Kannan S., Spratt A., Cohen A., Naqvi S., Chand H., Quinn T., 2021. Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. J Autoimmun. 124:102715.

Ketfi A., Chabati O., Chemali S., Mahjoub M., Gharnaout M., Touahri R., Djenouhat K., Selatni F., Ben Saad H., 2020.Profil Clinique, biologique et radiologique des patients Algériens hospitalisés pour COVID 19 : données préliminaires. Pan Afr Med J; 35 (Suppl 2); P: 77.

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35 (6), P:1547-1549.

Laamarti M., Chemao-Elfihri M.W., Kartti S., Laamarti R., Allam L., Ouadghiri M., Smyej I., Rahoui J., Benrahma H., Diawara I., Alouane T., Essabbar A., Siah S., Karra M., El Hafidi N., El Jaoudi R., Sbabou L., Nejjari C., Amzazi S., Mentag R., Belyamani L., Ibrahimi A., 2020. Genome Sequences of Six SARS-CoV-2 Strains Isolated in Morocco, Obtained Using Oxford Nanopore MinION Technology. Microbiol Resour Announc, 9(32), e00767-20, P: 8.

Larsen C. S., Paludan S.R., 2020. Corona’s new coat: SARS-CoV-2 in Danish minks andimplications for travel medicine. Travel Med Infect Dis 38.

Nelson G., Buzko O., Spilman P., Niazi K., Rabizadeh S., Soon-Shiong P., 2021. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone. Potentially resulting in an escape mutant, BioRxiv The preprint server for biology. P: 13.

Nonaka C.K.V., Franco M.M., Gräf T., de Lorenzo Barcia C.A., de Ávila Mendonça R.N., Felix de Sousa K.A., Neiva L.M.C., Fosenca V., Mendes A.V.A., de Aguiar R.S., Giovanetti M., 2021. Genomic Evidence of a Sars-Cov-2 Reinfection Case with E484K Spike Mutation in Brazil. Emerg Infect Dis; 27(5); P: 1522–1524.

Sayers E. W., Cavanaugh M., Clark K., Pruitt K. D., Schoch C. L., Sherry S. T., Karsch-Mizrachi I. K., 2020. GenBank. Nucleic Acids Res. 49(D1): D92-D96.

Shrivastava S., Mhaske S.T., Modak M.S., Virkar R.G., Pisal S.S., Mishra A.C., Arankalle V.A., 2022. Emergence of two distinct variants of SARS-CoV-2 and an explosive second wave of COVID-19: the experience of a tertiary care hospital in Pune, India. Arch Virol. 167(2); P: 393-403.

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Likelihood, Distance, and Parsimony methods. Molecular Biology and Evolution. Vol. 28, Iss. 10, P: 2731-2739.

Cavanaugh A.M., Fortier S., Lewis P., Arora V., Johnson M., George K., Tobias J., Lunn S., Miller T., Thoroughman D., Spicer K.B., 2021. COVID-19 Outbreak Associated with a SARS-CoV-2 R.1 Lineage Variant in a Skilled Nursing Facility After Vaccination Program - Kentucky, March 2021. MMWR Morb Mortal Wkly Rep, 70(17). P: 639-643.

Thompson J. D., Higgins D. G., Gibson T. J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), P: 4673-80.

Wang Y., Zhang D., Du G., Du R., Zhao J., Jin Y., Fu S., Gao L., Cheng Z., Lu Q, Hu Y., Luo G., Wang K., Lu Y., Li H., Wang S., Ruan S., Yang C., Mei C., Wang Y., Ding D., Wu F., Tang X., Ye X., Ye Y., Liu B., Yang J., Yin W., Wang A., Fan G., Zhou F., Liu Z., Gu X, Xu J., Shang L., Zhang Y., Cao L., Guo T., Wan Y., Qin H., Jiang Y., Jaki T., Hayden F.G., Horby P.W., Cao B., Wang C., 2020. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial, 16; 395(10236). P:1569-1578.

Wise J., 2021. Covid-19: The E484K mutation and the risks it poses. BMJ; 372: n359.

WHO, 2022. SARS-CoV-2 variant tracking. World Health Organization.

Wu D., Lu J., Liu Y., Zhang Z., Luo L., 2020.Positive effects of COVID-19 control measures on influenza. International Journal of Infectious Diseases. Volume 95, P: 345-346.

Xu J., Zhao S., Teng T., Abdalla A. E., Zhu W., Xie L., Wang Y., Guo X. 2020. Systematic comparison of Two animal-to-human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 22;12(2). P: 244.

Zárate S., Taboada B., Muñoz-Medina J.E., Iša P., Sanchez-Flores A., Boukadida C., Herrera-Estrella A., Mojica N.S., Rosales-Rivera M., Gómez-Gil B., Salas-Lais A.G., Santacruz-Tinoco C.E., Montoya-Fuentes H., Alvarado-Yaah J.E., Molina-Salinas C.M., Espinoza-Ayala G.E., Enciso-Moreno J.A., Gutiérrez-Ríos R.M., Loza A., Moreno-Contreras J., García-López R., Rivera-Gutierrez X., Comas-García A., Wong-Chew R.M., Jiménez-Corona M.E, Del Angel R.M., Vazquez-Perez J.A, Matías-Florentino M., Pérez-García M., Ávila-Ríos S., Castelán-Sánchez H.G., Delaye L., Martínez-Castilla L.P., Escalera-Zamudio M., López S., Arias C.F., 2022. The Alpha Variant (B.1.1.7) of SARS-CoV-2 Failed to Become Dominant in Mexico. Microbiology Spectrum, 10(2): e0224021.

Zhang H., Penninger J. M., Li Y., Zhong N., Slutsky A. S., 2020. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med; 46(4), P: 586-590.

Zeghbib S., Somogyi B.A., Zana B., Kemenesi G., Herczeg R., Derrar F., Jakab F., 2021. The Algerian Chapter of SARS-CoV-2 Pandemic: An Evolutionary, Genetic, and Epidemiological Prospect. Viruses ;13(8). P:1525.

Downloads

Published

01/01/2023

How to Cite

DEROUICHE, L., LATRACH, . R., & SEDDAOUI, . R. (2023). Studying mutations of SARS-Cov-2 different variants (Alpha, Beta, Delta, Gamma, Omicron). Genetics & Biodiversity Journal, 7(1), 75–87. https://doi.org/10.46325/gabj.v7i1.314

Issue

Section

Original Article