In silico study of the DNA sequences of the Coronavirus in several animal species and human
DOI:
https://doi.org/10.46325/gabj.v9i1.422Keywords:
Coronavirus, animals, humans, S gene, phylogenyAbstract
Coronaviruses are positive-sense single-stranded RNA viruses, and their name derives from their crown-like appearance. In this study, we inventoried the animal species affected by Coronaviruses, and then we performed a comparative phylogenetic analysis based on DNA sequences among the different viral strains of Coronaviruses that have affected these animals as well as humans. To carry out this work, we used MEGA software version 11 to analyze the DNA sequences extracted from GenBank of the S gene. We classified the viral strains of this gene according to the infected animal species and the geographical area in which they were found. We worked on 33 nucleotide sequences of the S gene from different strains, such as SARS-CoV-2 and MERS-CoV affecting humans, Bat-CoV affecting bats, and PEDV and PDCoV affecting pigs, across several countries including China, Saudi Arabia, the United States, Japan, and Spain. We found that the S gene is characterized by an accumulation of mutations among the different strains, with certain nucleotide changes that may consequently be responsible for the transmission of the virus from animals to humans. Moreover, our results show that the S gene exhibits a very high genetic diversity among the Coronavirus strains, whether they infect animals or humans in different countries.
References
Alluwaimi A. M., Alshubaith I. H., Alali A. M., Abohlaïka S., 2020. The Coronaviruses of Animals and Birds: Their Zoonosis, Vaccines, and Models for SARS-CoV and SARS-CoV2. Front. Vet. Sci. 7 : 582287.
Bouwman K. M., Delpont M., Broszeit F., Berger R, Weerts E. A., Lucas M. N., Delverdier M., Belkasmi S., Papanikolaou A., Boons G. J., Guérin J-L., de Vries R. P., Ducatez M. F., Verheije M. H., 2019. Guinea Fowl Coronavirus Diversity Has Phenotypic Consequences for Glycan and Tissue Binding. Journal of Virology, 93(10). Doi.org/10.1128/jvi.00067-19.
Chen N., Zhou M., Dong X., Qu J., Gong F., Han H., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L., 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 15; 395(10223): 507-513.
Chen Y. N., Loa C. C., Ababneh M. M. K., Wu C. C., Lin T. L., 2015. Genotyping of turkey coronavirus field isolates from various geographic locations in the Unites States based on the spike gene. Arch Virol, 160(11): 2719-26.
Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W., 2016. GenBank. Nucleic Acids Research, Volume 44, Issue D1, P: D67-D72.
Cowley J. A., Walker P. J., Flegel T. W., Lightner D. V., Tang-Nelson K. F. J., Bonami J. R., Snijder E. J., de Groot R. J., King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J., 2011. Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, Part of book, Family Roniviridae, 829-834.
Derouiche L., Benzayed Y., Belmihoub M., Derouiche F., 2022. A study of genetic variants of SARS-CoV-2 using bioinformatics tools. Genet. Biodiv. J, 6 (1): 137-148.
Derouiche L., Latrach R., Seddaoui R., 2023. Studying mutations of SARS-Cov-2 different variants (Alpha, Beta, Delta, Gamma, Omicron). Genet. Biodiv. J, 2023; 7 (1): 75-87.
Dung V. N., Terada Y., Minami S., Yonemitsu K., Nagata N., Thanh L. E., Kuwata R., Shimoda H., Maeda K., 2017. Characterization of canine coronavirus spread among domestic dogs in Vietnam. J. Vet. Med. Sci. 79(2): 343-349.
Folegatti P. M., Bittaye M., Flaxman A., Dphil, Ramos L. F., Bellamy D., Kupke A., Mair C., Makinson R., Sheridan J., Rohde C., Halwe S., Jeong Y., Park Y.C., Kim J.K.,Song M., Boyd A.T. N., Silman D., Poulton I., Datoo M., Marshall J., Themistocleous., Lawrie A., Roberts R., Berrie E., Becker S., Lambe T., Hill A., Ewer K., Gilbert S., 2020. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. The lancet Infectious diseases. 20(7): 816-826.
Fung T.S., Liu D.X., 2019. Human Coronavirus: Host-Pathogen Interaction. Annual review of Microbiology, 73: 529-557. Doi.org/10.1146/annurev-micro-020518-115759.
Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo W. S., Li P. H., Zhangyj L. J., Guan Y. J., Butt K. M., Wong K. L., Chan K. W., Lim W., Shortridge K. F., Yuen K. Y., Peiris J. S. M., Poon L. L. M., 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 302(5643): 276-8.
Guangwen L., Hu Y., Wang Q., Qi J., Gao F, Li Y., Zhang Y., Zhang W., Yuan Y., Bao J., Zhang B., Shi Y., Yan J., Gao G.F., 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 500: 227-231.
Kin N., Miszczak F., Diancourt L., Caro V., Moutou F., Vabret A., Gouilh M.R., 2016. Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern. Infect Genet Evol. 40:186-191.
Korber B., Fischer W. M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E., Bhattacharya T., Foley B., Hate K.M., Parker M. D., Perdrix D. G., Evans C. M., Homme libre T. M., de Silva T. I., 2020. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 182(4): 812-827.
Kuhls K., Mauricio I., 2019. Phylogenetic studies. Methods Mol. Biol. 1971: 9-68.
Li F., 2016. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology, 3: 237-261. DOI: 10.1146/annurev-virology-110615-042301.
Manuel B. F., Cardozo T., 2020. SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int. J. Clin. Pract. 74(8): e13525.
Nguyen V. D., Sueyoshi M., Norimine J., Hirai T., Myint O., Teh A. A. P., Izzati U. Z., Fuke N., Yamaguchi R., 2018. Molecular characterization of US-like and Asian non-S INDEL strains of porcine epidemic diarrhea virus (PEDV) that circulated in Japan during 2013-2016 and PEDVs collected from recurrent outbreaks. BMC veterinary search 14: 96.
Pérez C. R., Mendoza H. R., Elvira R. S., Velázquez R. S., Betancourt J. I., 2019. First report and phylogenetic analysis of porcine deltacoronavirus in Mexico. Transbound Emerg Dis. 66: 1436-1441.
Qingqing L., Zhang H., Li B., Qingwen D., Wang Y., Gao W., Guo D., Wei Z., Hu H., 2019. Susceptibility of Chickens to Porcine Deltacoronavirus Infection. Viruses. 11(6): 573.
Sayers E. W., Cavanaugh M., Clark K., Pruitt K. D., Schoch C. L., Sherry S. T., Karsch-Mizrachi I., 2020. GenBank. Nucleic Acids Research. 49(D1): D92-D96.
Siddell S., Coll M., 1983. Pathogénese des infections virales. Clinique vétérinaire de d’Amérique de Nord. 6 :1049-1079.
So R. T. A., Chu D. K. W., Miguel E., Perera R. A. P. M., Oladipo J. O., Fihri O. F., Aylet G., Ko R. L. W., Zhou Z., Cheng M. S., Kuranga S. A., Roger F. L., Chevalier V., Webby R. J., Woo P. C. Y., Poon L. L. M., Peiris M., 2019. Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus. Journal virology, 93(23): e01236-19. DOI: 10.1128/JVI.01236-19.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Likelihood, Distance, and Parsimony methods. Molecular Biology and Evolution, 28 (10): 2731-2739. Doi.org/10.1093/molbev/msr121.
Than V. T., Choe S. E., Vu T. H., Tien D., Nguyen T. L., Bui T. T. N., Mai T. N., Cha R. M., Song D., An D. J., Van P. L., 2020. Genetic characterization of the spike gene of porcine epidemic diarrhea viruses (PEDVs) circulating in Vietnam from 2015 to 2016. Journal veterinary medicine and science, 6(3): 535-542. DOI: 10.1002/vms3.256.
Thompson J. D., Higgins D. G., Gibson T. J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22): 4673-80.
Woo P. C. W., Lau S. K. P., Lam C. C. F., Lau C. C. Y., Tsang A. K. L., Lau J. H., Baï R., Teng J. L. L., Tsang K. C. C., Wang M., Zheng B. J., Chan K. H., Yuen K. W., 2012. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus. Journal of virology, 86 (7): 3995-4008. Doi: 10.1128/JVI.06540-11.
Yuan P., Yang Z., Song H., Wang K., Yang Y., Xie L., Huang S., Liu J., Ran L., Song Z., 2018. Three Main Inducers of Alphacoronavirus Infection of Enterocytes: Sialic Acid, Proteases, and Low pH. Intervirology. 61(2): 53-63.
Zhang Z., Shen L., Gu X., 2016. Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission. Sci. Rep. 4(6): 25049.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.