Phycochemistry study and antimicrobial activity of Spirogyra freshwater green microalgae from Algeria

Authors

  • Larbi BELYAGOUBI Natural Products Laboratory, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria
  • Rachid CHAIBI, Hicham GOUZI Laboratory of Biological and Agricultural Sciences (LSBA), University of Amar Telidji (UATL), 03000 Laghouat, Algeria
  • Fatima Zohra AISSAOUI, Zahrat El Oula BENAMAR 3Département de Biologie, Université Amar Telidji, Laghouat, Algérie
  • Nabila BELYAGOUBI-BENAHMMOU Natural Products Laboratory, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen, 13000, Algeria;

DOI:

https://doi.org/10.46325/jnpra.v3i02.65

Keywords:

Oued El Mellah; algae; Spirogyra; phycochemical componds; antimicrobial activity

Abstract

In Algeria, algae have not been adequately explored for their potential as a source of bioactive substances. In this context the blooms of green alga Spirogyra sp. were collected from freshwater habitats in Oued El Mellah near M’sila province of Algeria. Hexane, acetone and ethanol crude extracts were screened for antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi and Candida albicans. The contents of total soluble sugars, soluble proteins, total lipids and phenolic acids were also determined. The present findings revealed that the highest extraction yield was obtained from ethanol (4.93%) compared to acetone (3.67%) and hexane (2.33%). The contents of phycochemical compounds were 32.5% of soluble carbohydrates, 15.84% of lipids, 15.6% of phenolic acids and 5.16% of proteins. All extracts exhibited better and stronger antibacterial activities against the five pathogenic bacteria with inhibition zones diameter ranged from 13.5-29 mm for acetone extract, from 13-25 mm for ethanol extract and from 12.5-20.5 mm for hexane extract at 7.5 µL. The minimal inhibitory concentration (MIC) was in the range of 15-40 mg mL-1. The acetone extract was more effective than others extracts with MIC value of 15 mg mL-1 for all bacteria. These findings indicate the presence of promising antibacterial compounds originating from microalgae, which can be exploited for the production of new antimicrobial agents.

References

Abdel-Aal, E. I., Haroon, A. M.  Mofeed, J. (2015). Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata. Egyptian Journal of Aquatic Research, 41, 233–46.

Alassali, A., Cybulska, I., Brudecki, G. P., Farzanah, R.  Thomsen, M. H. (2016). Methods for Upstream Extraction and Chemical Characterization of Secondary Metabolites from Algae Biomass. Advanced Techniques in Biology & Medicine, 4,163.

Aloui, H., Khwaldia, K. (2016). Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Comprehensive Reviews in Food Science and Food Safety, 15, 1080–1103.

Belyagoubi, L., Belyagoubi-Benhammou, N., Atik-Bekkara, F., Djamel Eddine Abdelouahid. (2022). Influence of harvest season and different polarity solvents on biological activities, phenolic compounds and lipid-soluble pigment contents of Spirogyra sp. from Algeria. Advances in Traditional Medicine, 22, 359–369. https://doi.org/10.1007/s13596-021-00551-0

Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

Chang, S., & Lee, Y. (2017). Comparison of two chemical extraction methods for proteins and polysaccharides of Spirogyra fluviatilis in extracellular polymeric substances. International Symposium on Resource Exploration and Environmental Science. IOP Conference Series: Earth and Environmental Science, 64, 012122. doi :10.1088/1755-1315/64/1/012122.

CLSI (Clinical and Laboratory Standards Institute). (2006). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Ninth Edition. Clinical and Laboratory Standards Institute, Wayne, PA, CLSI document M2-A9.

CLSI. (2006). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard— Standard Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

Comité de l’antibiogramme de la Société Française de Microbiologie. Recommandations (2017). V.1.0 Mars. 2017. [http://www.sfm-microbiologie.org/UserFiles/files/casfm/ CASFMV1_0_MARS_2017.pdf].

Cox, C.S., Abu-Ghannam, N., & Gupta, S. (2010). An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17, 205–220.

Duangjaia, A., Limpeanchob, N., Trisat,K, & Amornlerdpison, D. (2016). Spirogyra neglecta inhibits the absorption and synthesis of cholesterol in vitro. Integrative Medicine Research, 5, 301–308

El-Tawil, B. A. H., & Khalil, A. N. (1983). Chemical constituents of some algal species from Abu-Qir Bay, Egypt. Journal of the Faculty of Marine Science, 3(1404H), 85–94.

Falaise, C., François, C., Travers, M. A., Morga, B., Haure, J., Tremblay, R., Turcotte, F., Pasetto, P., Gastineau, R., Hardivillier, Y., Leignel, V.  Mouget, J. L. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs, 14, 159.

Genovese, G., Faggio, C., Gugliandolo, C., Torre, A., Spanò, A., Morabito, M.  Maugeri T. L. (2012). In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. Marine Environmental Research, 73, 1–6.

Hainz, R., Wöber, C.  Schagerl, M. (2009). The relationship between Spirogyra (Zygnematophyceae - Streptophyta) filament type groups and environmental conditions in Central Europe. Aquatic Botany, 91, 173–180.

Herrero, M., Martín-Álvarez, P. J., Señorans, F. J., Cifuentes, A.  Ibáñez, E. (2005). Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chemistry, 93, 417–423.

Huynh, M.  Serediak, N. (2006). Algae Identification Field Guide. Agriculture and Agri-Food Canada, 40 pp.

Ivanova, A. J., Nechev, I., Tsvetkova, H., Najdenski, K.  Popov, S. S. (2011). Compounds with antibacterial activity from the freshwater alga Spirogyra crassa (L.) Kutz. Genet. Plant Physiology, 1, 31–37.

Jaswir, I., Tawakalit Tope, A. H., Raus, R. A., Ademola Monsur, H., & Ramli, N. (2014). Study on anti-bacterial potentials of some Malaysian brown seaweeds. Food Hydrocolloids. 42(P2), 275–279.

Jebasingh, S. E. J., Rosmary, S., Elaiyaaja, S., Sivaraman, K., Lakshmikandan, M., Murugan, A.  Raja, P. (2011). Potencial antibacterial activity of selected green and red seaweeds. Journal of Pharmaceutical and Biomedical Sciences, 5, 1–7.

Kamble, S., Rokde, A.  Chavan, A. (2012). Antifungal activity of algal extracts against plant pathogenic fungi. An International Multidisciplinary Research Journal, 2(3), 23–24.

Kamenarska, Z. G., Dimitrova-Konaklieva, S. D., Nikolova, C., Kujumgiev, A. I., Stefanov, K. L., Popov, S. S. 2000. Volatile Components of the Freshwater Algae Spirogyra and Mougeotia. Z. Naturforsch, C55, 495-499.

Khalid, M. N., Shameel, M.  Ghazala, B. (2012). Bioactivity and Phycochemistry of Two Species of Spirogyra Link (Zygnemophyceae) from Pakistan. International Journal on Algae, 14(3), 237–246.

Kim, I. H., Lee, J.H. (2008). Antimicrobial activities against methicillin-resistant Staphylococcus aureus from macroalgae. Journal of Industrial and Engineering Chemistry, 14, 568–572.

Kumar, J., Dhar, P., Tayade, A. B., Gupta, D., Chaurasia, O. P., Upreti, D. K., Toppo, K., Arora, R., Suseela, M. R.  Srivastava R. B. (2015). Chemical Composition and Biological Activities of Trans-Himalayan Alga Spirogyra porticalis (Muell.) Cleve. PLoS One, 10(2), 1–24.

McCready, R. M., Guggolz, J., Silviera, V.  Ownes, H. S. (1950). Determination of starch and amylase in vegetables, application to peas. Analytical Chemistry, 22, 1156–1158.

Mitova, M. Iv., Usov, A. I., Bilan, M. I., Stefanov, K. L., Dimitrova-Konaklieva, S. D., Tonov, D. P.  Popov, S. S., (1999). Sterols and polysaccharides in freshwater algae Spirogyra and Mougeotia. Z. Naturforsch, 54c, 1016–1020.

NCCLS (National Committee for Clinical Laboratory Standards). (1997). Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. National Committee for Clinical Laboratory Standard, Wayne, PA, USA, M27-A.

Najdenski, H. M., Gigova, L. G., Iliev, I.I., Pilarski, P.S., Lukavsky, J., Tsvetkova, I.V., Ninova, M.S., & Kussovski, V.K. (2013). Antibacterial and antifungal activities of selected microalgae and Cyanobacteria. International Journal of Food Science & Technology, 48(7), 1533–1540.

Pane, G., Cacciola, G., Giacco, E., Mariottini, G. L.  Coppo E. (2015). Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis. Marine Drugs, 13, 6440–6452.

Prakash, J. W., Antonisamy, J. M.  Jeeva, S. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine, 1, S170-S173.

Santoyo, S., Rodriguez-Meizoso, I., Cifuentes, A., Jaime, L., García-Blairsy Reina, G., Señorans, F. J.  Ibáñez, E. (2009). Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT - Food Science and Technology, 42, 1213–1218.

Singleton, V. L., Orthofer, R.  Lamuela-Raventós, R. M. (1999). Analysis of total phenols and antioxidants and other substrates by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152-178.

Smith, V.J., Desb,is, A.P. & Dyrynda, E.A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine Drugs, 8, 1213–1262.

Stirk, W.A, Reinecke, D.L.  Staden, J. (2007). Seasonal variation in antifungal, antibacterial and acetyl cholinesterase activity in seven South African seaweeds. Journal of Applied Phycology, 19, 271-276.

Tuney, I., Cadirci, B. H., Unal, D.  Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30, 171–175.

Downloads

Published

2024-02-13

How to Cite

Larbi BELYAGOUBI, Rachid CHAIBI, Hicham GOUZI, Fatima Zohra AISSAOUI, Zahrat El Oula BENAMAR, & Nabila BELYAGOUBI-BENAHMMOU. (2024). Phycochemistry study and antimicrobial activity of Spirogyra freshwater green microalgae from Algeria. Journal of Natural Product Research and Applications, 3(02), 47–60. https://doi.org/10.46325/jnpra.v3i02.65

Most read articles by the same author(s)