Beyond the Centrifuge: A Systematic Review of Automated and Microfluidic DNA Extraction Innovations

Authors

  • Dr Farah Djelti CancerLab, Faculty of Medical Sciences, University of Tlemcen, Tlemcen, Algeria
  • Pr. Tarik M. Chaouche Natural Products Laboratory, Department of Biology, Aboubekr Belkaïd University,
  • Dr. Moussa BELHADJ
  • Dr. Sarah LAMARI
  • Dr. Meknassia DEBBAL
  • Dr. Imane GHELAI
  • Dr. Houssam BOULANOIR

DOI:

https://doi.org/10.46325/f42rzd14

Keywords:

DNA Extraction, Microfluidics, Systematic Review

Abstract

This systematic review following PRISMA standards evaluates DNA extraction methods published in scientific journals over the past ten years. Results show that silica column-based purification continues to be the most popular technique in molecular biology labs, consistently producing high amounts of genomic DNA with excellent purity levels. At the same time, magnetic bead separation technology is becoming increasingly common in automated, large-scale operations, though DNA yields are generally lower compared to column methods.

The cost comparison shows clear differences: automated robotic systems require much higher expenses per sample than traditional manual CTAB (cetyltrimethylammonium bromide) extraction. However, these automated platforms provide better consistency and more reliable results between experiments. When combining data from multiple studies, we found significant differences in how well various methods extract DNA, with particular problems in recovering viral RNA. These difficulties are especially severe when samples contain PCR inhibitors substances like humic acids, polysaccharides, and bile salts, commonly found in challenging samples such as soil and fecal material. 

These findings highlight the strong need for standardized DNA extraction protocols across laboratories. Future improvements could include using artificial intelligence to optimize extraction procedures and developing microfluidic chip-based systems to reduce errors and improve DNA recovery from difficult biological samples.

Author Biographies

  • Dr Farah Djelti, CancerLab, Faculty of Medical Sciences, University of Tlemcen, Tlemcen, Algeria

    Biology

  • Pr. Tarik M. Chaouche, Natural Products Laboratory, Department of Biology, Aboubekr Belkaïd University,

    biochemistry

  • Dr. Moussa BELHADJ

    biology

  • Dr. Sarah LAMARI

    biology

  • Dr. Meknassia DEBBAL

    biochemistry

  • Dr. Houssam BOULANOIR

    genetic

References

Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13. https://doi.org/10.1186/s13007-016-0152-4

Alberola‐Mora, I., Guerra‐Font, O., Espinoza‐Calderón, O., Galià-Camps, C., & Džunková, M. (2025). Combination of Sample Preservation Approaches and DNA Extraction Methods for Long‐Read Sequencing of Nudibranchs' Genomes. Ecology and Evolution, 15. https://doi.org/10.1002/ece3.71262

Al-Dhabaan, F., Yousef, H., Shoala, T., Shaheen, J., Sawi, Y., & Farag, T. (2023). Enhancement of fungal DNA templates and PCR amplification yield by three types of nanoparticles. Journal of Plant Protection Research. https://doi.org/10.24425/119119

Ambanpola, N., Manilgama, T., Somarathna, P., Seneviratne, K., & Jayathilaka, N. (2025). Assessment of the cellulose-based dipstick method for bacterial and fungal DNA extraction. Journal of Multidisciplinary & Translational Research. https://doi.org/10.4038/jmtr.v10i1.80

Bagdonaitė, L., Leder, E., Lifjeld, J., Johnsen, A., & Mauvisseau, Q. (2025). Assessing reliability and accuracy of qPCR, dPCR and ddPCR for estimating mitochondrial DNA copy number in songbird blood and sperm cells. PeerJ, 13. https://doi.org/10.7717/peerj.19278

Bolognesi, G., Latorre, A., Marini, M., Codato, A., Fontani, F., Saggioro, F., Luiselli, D., Basso, P., Cilli, E., & Bellin, D. (2025). Optimizing ancient DNA recovery from archaeological plant seeds. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-21743-7

Bruijns, B., Hoekema, T., Oomens, L., Tiggelaar, R., & Gardeniers, H. (2022). Performance of Spectrophotometric and Fluorometric DNA Quantification Methods. Analytica. https://doi.org/10.3390/analytica3030025

Carey, S., Becklund, L., Fabre, P., & Schenk, J. (2023). Optimizing the lysis step in CTAB DNA extractions of silica‐dried and herbarium leaf tissues. Applications in Plant Sciences, 11. https://doi.org/10.1002/aps3.11522

Chen, H., Luthra, R., Goswami, R., Singh, R., & Roy-Chowdhuri, S. (2015). Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies. Cancers, 7, 1699-1715. https://doi.org/10.3390/cancers7030859

Chen, W., Han, M., Zhou, J., Ge, Q., Wang, P., Zhang, X., Zhu, S., Song, L., & Yuan, Y. (2021). An artificial chromosome for data storage. National Science Review, 8. https://doi.org/10.1093/nsr/nwab028

Cheng, M., Li, J., Feng, S., Zhang, E., Wu, B., Cai, G., Bian, X., Jia, C., & Zhao, J. (2025). An integrated microfluidic platform for multi-target nucleic acid detection based on rotational magnetic field-induced uniform bead distribution. Sensors and Actuators B: Chemical. https://doi.org/10.1016/j.snb.2025.137892

Conde, A., Keraite, I., Ongaro, A., & Kersaudy-Kerhoas, M. (2020). Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples. Lab on a Chip. https://doi.org/10.1039/c9lc01130g

Cotes-Perdomo, A., Méndez-Gutierrez, K., Alfsnes, K., Andreassen, Å., & Jenkins, A. (2025). Making the best of a bad sample: Comparison of DNA extraction and quantification methods using sub-optimally stored Ixodes ricinus ticks. PLOS One, 20. https://doi.org/10.1371/journal.pone.0323251

Demkina, A., Slonova, D., Mamontov, V., Konovalova, O., Yurikova, D., Rogozhin, V., Belova, V., Korostin, D., Sutormin, D., Severinov, K., & Isaev, A. (2023). Benchmarking DNA isolation methods for marine metagenomics. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-48804-z

Devonshire, A., Morata, J., Jubin, C., Pereira, R., Hernandez-Hernandez, L., Yener, D., Cabannes, E., McGinn, S., Delépine, M., Fund, C., Tonda, R., Heath, S., Dabad, M., Gutierrez-Cuesta, J., Escudero, I., Frias-Lopez, M., Cowen, S., Whale, A., Voss, T., Deleuze, J., Gut, I., Gut, M., & Foy, C. (2025). Interlaboratory evaluation of high molecular weight DNA extraction methods for long-read sequencing and structural variant analysis. BMC Genomics, 26. https://doi.org/10.1186/s12864-025-11792-7

Dickinson, G., Mortuza, G., Clay, W., Piantanida, L., Green, C., Watson, C., Hayden, E., Andersen, T., Kuang, W., Graugnard, E., Zadegan, R., & Hughes, W. (2021). An alternative approach to nucleic acid memory. Nature Communications, 12. https://doi.org/10.1038/s41467-021-22277-y

Dieki, R., Emvo, N., & Akue, J. (2022). Comparison of six methods for Loa loa genomic DNA extraction. PLOS ONE, 17. https://doi.org/10.1371/journal.pone.0265582

Elie, C., Perret, M., Hage, H., Sentausa, E., Hesketh, A., Louis, K., Fritah-Lafont, A., Leissner, P., Vachon, C., Rostaing, H., Reynier, F., Gervasi, G., & Saliou, A. (2023). Comparison of DNA extraction methods for 16S rRNA gene sequencing in the analysis of the human gut microbiome. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-33959-6

Forootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L., & Kubista, M. (2017). Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomolecular Detection and Quantification, 12, 1 - 6. https://doi.org/10.1016/j.bdq.2017.04.001

Fu, Z., Song, J., & Jameson, P. (2017). A rapid and cost effective protocol for plant genomic DNA isolation using regenerated silica columns in combination with CTAB extraction. Journal of Integrative Agriculture, 16, 1682-1688. https://doi.org/10.1016/s2095-3119(16)61534-4

Gamba, C., Hanghøj, K., Gaunitz, C., Alfarhan, A., Alquraishi, S., Al-Rasheid, K., Bradley, D., & Orlando, L. (2016). Comparing the performance of three ancient DNA extraction methods for high‐throughput sequencing. Molecular Ecology Resources, 16. https://doi.org/10.1111/1755-0998.12470

Gand, M., Bloemen, B., Vanneste, K., Roosens, N., & De Keersmaecker, S. (2023). Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing to detect bacteria. BMC Genomics, 24. https://doi.org/10.1186/s12864-023-09537-5

Geng, C., Liu, S., & Jiang, X. (2023). A nanoparticle-coated microfluidic chip for automated, non-destructive extraction of encapsulated DNA in data storage. Chemical Science, 14, 3973-3981. https://doi.org/10.1039/d2sc06466a

Gill, K., Negi, S., Kumar, P., & Irfan, M. (2025). Improved genomic DNA extraction from citrus species using a modified CTAB method. Molecular Biology Reports, 52. https://doi.org/10.1007/s11033-025-10763-1

Haripriya, K., Srinivas, A., Chikkalingaih, M., Yadav, A., Vishwanath, P., Nataraj, S., & Prashant, A. (2025). Revolutionizing DNA Extraction: A Cost-Effective Approach for Genomic DNA Retrieval from Dried Blood Spots. EJIFCC, 36, 60-68.

Hermans, S., Buckley, H., & Lear, G. (2018). Optimal extraction methods for the simultaneous analysis of DNA from diverse organisms and sample types. Molecular Ecology Resources, 18, 557-569. https://doi.org/10.1111/1755-0998.12762

Hunter, M., Dorazio, R., Butterfield, J., Meigs-Friend, G., Nico, L., & Ferrante, J. (2017). Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Molecular Ecology Resources, 17. https://doi.org/10.1111/1755-0998.12619

Hussing, C., Kampmann, M., Mogensen, H., Børsting, C., & Morling, N. (2018). Quantification of massively parallel sequencing libraries – a comparative study of eight methods. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-19574-w

Inglis, P., Pappas, M., Resende, L., & Grattapaglia, D. (2018). Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLoS ONE, 13. https://doi.org/10.1371/journal.pone.0206085

Iqbal, S., Rehman, I., Khan, I., Razzaq, M., & Kamal, M. (2025). Optimization and Comparative Analysis of Phenol-Chloroform vs Salting-Out DNA Extraction Methods from Human Blood and Saliva Tissues: Assessing Yield, Purity, and Suitability for Downstream Molecular Applications. Open Access Public Health and Health Administration Review. https://doi.org/10.59644/oaphhar.1(1).238

Jagannath, A., Li, Y., Cong, H., Hassan, J., Gonzalez, G., Wang, W., Zhang, N., & Gilchrist, M. (2023). UV-Assisted Hyperbranched Poly(β-amino ester) Modification of a Silica Membrane for Two-Step Microfluidic DNA Extraction from Blood. ACS Applied Materials & Interfaces, 15, 31159-31172. https://doi.org/10.1021/acsami.3c03523

Jangra, S., & Ghosh, A. (2022). Rapid and zero-cost DNA extraction from soft-bodied insects for routine PCR-based applications. PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0271312

Janku, F., Huang, H., Pereira, D., Kobayashi, M., Chiu, C., Call, S., Woodbury, K., Chao, F., Marshak, D., & Chiu, R. (2021). A novel method for liquid-phase extraction of cell-free DNA for detection of circulating tumor DNA. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-98815-x

Jeon, K., Lee, J., Lee, J., Kim, M., Kim, H., Kang, H., & Lee, A. (2019). Quantification of Cell-Free DNA: A Comparative Study of Three Different Methods. Journal of Laboratory Medicine and Quality Assurance, 41, 214-219. https://doi.org/10.15263/jlmqa.2019.41.4.214

Joesaar, A., Holub, M., Lutze, L., Emanuele, M., Kerssemakers, J., Pabst, M., & Dekker, C. (2024). A microfluidic platform for extraction and analysis of bacterial genomic DNA. Lab on a Chip, 25, 1767-1775. https://doi.org/10.1101/2024.10.17.618837

Khetan, D., Gupta, N., Chaudhary, R., & Shukla, J. (2019). Comparison of UV spectrometry and fluorometry-based methods for quantification of cell-free DNA in red cell components. Asian Journal of Transfusion Science, 13, 95 - 99. https://doi.org/10.4103/ajts.ajts_90_19

Kresse, S., Brandt-Winge, S., Pharo, H., Flatin, B., Jeanmougin, M., Vedeld, H., & Lind, G. (2023). Evaluation of commercial kits for isolation and bisulfite conversion of circulating cell-free tumor DNA from blood. Clinical Epigenetics, 15. https://doi.org/10.1186/s13148-023-01563-0

Lee, H., Park, C., Na, W., Park, K., & Shin, S. (2020). Precision cell-free DNA extraction for liquid biopsy by integrated microfluidics. NPJ Precision Oncology, 4. https://doi.org/10.1038/s41698-019-0107-0

Lehle, S., Emons, J., Hack, C., Heindl, F., Hein, A., Preuss, C., Seitz, K., Zahn, A., Beckmann, M., Fasching, P., Ruebner, M., & Huebner, H. (2023). Evaluation of automated techniques for extraction of circulating cell-free DNA for implementation in standardized high-throughput workflows. Scientific Reports, 13. https://doi.org/10.1038/s41598-022-27216-5

Li, S., Wan, C., Xiao, Y., Liu, C., Zhao, X., Zhang, Y., Yuan, H., Wu, L., Qian, C., Li, Y., Chen, P., & Liu, B. (2024). Multiple on-line active valves based centrifugal microfluidics for dynamic solid-phase enrichment and purification of viral nucleic acid. Lab on a Chip. https://doi.org/10.1039/d4lc00074a

Li, Y., Liu, S., Wang, Y., Wang, Y., Li, S., He, N., Deng, Y., & Chen, Z. (2023). Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications. Biosensors, 13. https://doi.org/10.3390/bios13100903

Lienhard, A., & Schäffer, S. (2019). Extracting the invisible: obtaining high quality DNA is a challenging task in small arthropods. PeerJ, 7. https://doi.org/10.7717/peerj.6753

Liu, B., Wu, H., Cao, Y., G., Zheng, X., Zhu, H., Song, X., & Sui, S. (2025). Reducing costs and shortening the cetyltrimethylammonium bromide (CTAB) method to improve DNA extraction efficiency from wintersweet and some other plants. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-94822-4

Lopez, L., Gonzales, H., Garcia, W., De Jesus Velez Chicoma, R., & Greta, M. (2025). Rapid and Efficient DNA Extraction Protocol from Peruvian Native Cotton (Gossypium barbadense L.) Lambayeque, Peru. Methods and Protocols, 8. https://doi.org/10.3390/mps8030050

Lutz, Í., Miranda, J., Santana, P., Martins, T., Ferreira, C., Sampaio, I., Vallinoto, M., & Gomes, G. (2023). Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0282369

Masago, K., Fujita, S., Oya, Y., Takahashi, Y., Matsushita, H., Sasaki, E., & Kuroda, H. (2021). Comparison between Fluorimetry (Qubit) and Spectrophotometry (NanoDrop) in the Quantification of DNA and RNA Extracted from Frozen and FFPE Tissues from Lung Cancer Patients: A Real-World Use of Genomic Tests. Medicina, 57. https://doi.org/10.3390/medicina57121375

Mavrodiev, E., Dervinis, C., Whitten, W., Gitzendanner, M., Kirst, M., Kim, S., Kinser, T., Soltis, P., & Soltis, D. (2021). A new, simple, highly scalable, and efficient protocol for genomic DNA extraction from diverse plant taxa. Applications in Plant Sciences, 9. https://doi.org/10.1002/aps3.11413

Nakayama, Y., Yamaguchi, H., Einaga, N., & Esumi, M. (2016). Pitfalls of DNA Quantification Using DNA-Binding Fluorescent Dyes and Suggested Solutions. PLoS ONE, 11. https://doi.org/10.1371/journal.pone.0150528

Nesic, M., Bødker, J., Terp, S., & Dybkær, K. (2021). Optimization of Preanalytical Variables for cfDNA Processing and Detection of ctDNA in Archival Plasma Samples. BioMed Research International, 2021. https://doi.org/10.1155/2021/5585148

Peng, H., Pan, M., Zhou, Z., Chen, C., Xing, X., Cheng, S., Zhang, S., Zheng, H., & Qian, K. (2024). The impact of preanalytical variables on the analysis of cell-free DNA from blood and urine samples. Frontiers in Cell and Developmental Biology, 12. https://doi.org/10.3389/fcell.2024.1385041

Penumarthy, V., Dourou, A., Lampropoulou, E., Arhondakis, S., & Prakash, R. (2025). FieldNA: a 3D printed vertical microfluidic device for portable nucleic acid isolation from olive oil samples. Frontiers in Bioengineering and Biotechnology, 13. https://doi.org/10.3389/fbioe.2025.1646041

Ping, Z., Chen, S., Zhou, G., Huang, X., Zhu, S., Zhang, H., Lee, H., Lan, Z., Cui, J., Chen, T., Zhang, W., Yang, H., Xu, X., Church, G., & Shen, Y. (2022). Towards practical and robust DNA-based data archiving using the yin–yang codec system. Nature Computational Science, 2, 234-242. https://doi.org/10.1038/s43588-022-00231-2

Polatoglou, E., Mayer, Z., Ungerer, V., Bronkhorst, A., & Holdenrieder, S. (2022). Isolation and Quantification of Plasma Cell-Free DNA Using Different Manual and Automated Methods. Diagnostics, 12. https://doi.org/10.3390/diagnostics12102550

Ponti, G., Maccaferri, M., Manfredini, M., Kaleci, S., Mandrioli, M., Pellacani, G., Ozben, T., Depenni, R., Bianchi, G., Pirola, G., & Tomasi, A. (2018). The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients.. Clinica chimica acta; international journal of clinical chemistry, 479, 14-19. https://doi.org/10.1016/j.cca.2018.01.007

Preuss, I., Rosenberg, M., Yakhini, Z., & Anavy, L. (2021). Efficient DNA-based data storage using shortmer combinatorial encoding. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-58386-z

Psifidi, A., Dovas, C., Bramis, G., Lazou, T., Russel, C., Arsenos, G., & Banos, G. (2015). Comparison of Eleven Methods for Genomic DNA Extraction Suitable for Large-Scale Whole-Genome Genotyping and Long-Term DNA Banking Using Blood Samples. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0115960

Rana, A. (2025). Challenging biological samples and strategies for DNA extraction. Journal of Investigative Medicine, 73, 443-459. https://doi.org/10.1177/10815589251327503

Schiebelhut, L., Abboud, S., Daglio, G., Swift, H., & Dawson, M. (2017). A comparison of DNA extraction methods for high‐throughput DNA analyses. Molecular Ecology Resources, 17. https://doi.org/10.1111/1755-0998.12620

Sheershika, S., & Ram, M. (2024). Advances in DNA Extraction Techniques: A Comprehensive Review of Methods and Applications. Plant Cell Biotechnology and Molecular Biology. https://doi.org/10.56557/pcbmb/2024/v25i5-68683

Solyman, S., & Samak, M. (2025). Narrative Review of Bacterial DNA Extraction: Key Points and Challenges. Sinai International Scientific Journal. https://doi.org/10.21608/sisj.2025.407750

St-Amour, V., Tomar, V., & Belzile, F. (2025). High-Throughput DNA Extraction Using Robotic Automation (RoboCTAB) for Large-Scale Genotyping. Plants, 14. https://doi.org/10.3390/plants14152263

Tahir, M., Ahmad, A., Waziri, P., Abubakar, S., Wayah, S., Tyoapine, D., Ahmed, A., & Sulaiman, M. (2025). Evaluation of optimized DNA extraction methods from bacteria and whole blood for Polymerase Chain Reaction. Nigerian Journal of Biotechnology. https://doi.org/10.4314/njb.v41i2.5

Terp, S., Pedersen, I., & Stoico, M. (2024). Extraction of Cell-Free DNA: Evaluation of Efficiency, Quantity, and Quality. The Journal of Molecular Diagnostics, 26(5). https://doi.org/10.1016/j.jmoldx.2024.01.008

Tjoa, S., M., Suharyadi, E., & Daryono, B. (2025). Fumed silica-coated magnetite nanoparticles for DNA extraction: a safer alternative to TEOS. Voprosy Khimii i Khimicheskoi Tekhnologii. https://doi.org/10.32434/0321-4095-2025-161-4-41-48

Van Der Leest, P., Boonstra, P., Elst, A., Kempen, L., Tibbesma, M., Koopmans, J., Miedema, A., Tamminga, M., Groen, H., Reyners, A., & Schuuring, E. (2020). Comparison of Circulating Cell-Free DNA Extraction Methods for Downstream Analysis in Cancer Patients. Cancers, 12. https://doi.org/10.3390/cancers12051222

Versmessen, N., Van Simaey, L., Negash, A., Vandekerckhove, M., Hulpiau, P., Vaneechoutte, M., & Cools, P. (2024). Comparison of DeNovix, NanoDrop and Qubit for DNA quantification and impurity detection of bacterial DNA extracts. PLOS ONE, 19. https://doi.org/10.1371/journal.pone.0305650

Vesty, A., Biswas, K., Taylor, M., Gear, K., & Douglas, R. (2017). Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities. PLoS ONE, 12. https://doi.org/10.1371/journal.pone.0169877

Vilanova, S., Alonso, D., Gramazio, P., Plazas, M., García-Fortea, E., Ferrante, P., Schmidt, M., Díez, M., Usadel, B., Giuliano, G., & Prohens, J. (2020). SILEX: a fast and inexpensive high-quality DNA extraction method suitable for multiple sequencing platforms and recalcitrant plant species. Plant Methods, 16. https://doi.org/10.1186/s13007-020-00652-y

Wang, H., Zhao, X., Tan, L., Zhu, J., & Hyten, D. (2024). Crop DNA extraction with lab-made magnetic nanoparticles. PLOS ONE, 19. https://doi.org/10.1371/journal.pone.0296847

Wang, J., Li, K., Li, F., Li, X., Zhou, J., Yang, M., Zhang, X., Wang, M., & Li, L. (2025). Interaction of Nanomaterials with Nucleic Acids and Their Applications in Nucleic Acid Analysis. International Journal of Biological Sciences, 21, 4051-4068. https://doi.org/10.7150/ijbs.113309

Whitehead, E., Rudolf, F., Kaltenbach, H., & Stelling, J. (2018). Automated Planning Enables Complex Protocols on Liquid-Handling Robots. ACS Synthetic Biology, 7(3), 922-932. https://doi.org/10.1021/acssynbio.8b00021

Wu, M., Huang, Y., Huang, Y., Wang, H., Li, M., Zhou, Y., Zhao, H, Lan, Y., Wu, Z., Jia, C., Feng, S., & Zhao, J. (2023). Droplet magnetic-controlled microfluidic chip integrated nucleic acid extraction and amplification for the detection of pathogens and tumor mutation sites. Analytica Chimica Acta, 1271, 341469. https://doi.org/10.1016/j.aca.2023.341469

Ye, X., & Lei, B. (2023). The current status and trends of DNA extraction. BioEssays, 45. https://doi.org/10.1002/bies.202200242

Yu, M., Tang, X., Li, Z., Wang, W., Wang, S., Li, M., Yu, Q., Xie, S., Zuo, X., & Chen, C. (2024). High-throughput DNA synthesis for data storage. Chemical Society Reviews. https://doi.org/10.1039/d3cs00469d

Zhao, D., Zong, W., Wu, W., Li, Y., Wu, Z., Yang, Z., & Cao, S. (2025). Development and validation of a qPCR assay for the detection of residual host cell DNA in rabies vaccines produced in Vero cells. Frontiers in Bioengineering and Biotechnology, 13. https://doi.org/10.3389/fbioe.2025.1611428

Downloads

Published

01/20/2026

Issue

Section

Review Article

How to Cite

Beyond the Centrifuge: A Systematic Review of Automated and Microfluidic DNA Extraction Innovations. (2026). Genetics & Biodiversity Journal , 10(1), 74-91. https://doi.org/10.46325/f42rzd14

Similar Articles

1-10 of 37

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)