Assessment of in vitro antioxidant and in vivo anti-inflammatory activities of marine algae from Algerian coast

Authors

  • Ghania AISSAOUI Laboratory of Natural Products, Department of Biology, Faculty of Nature and Life Sciences, Earth and Universe Sciences, University Abou- Bekr Belkaïd, BP 119, Imama, Tlemcen, Algeria
  • Nabila BELYAGOUBI-BENHAMMOU aLaboratory of Natural Products, Department of Biology, Faculty of Nature and Life Sciences, Earth and Universe Sciences, University Abou- Bekr Belkaïd, BP 119, Imama, Tlemcen, Algeria
  • Larbi BELYAGOUBIa aLaboratory of Natural Products, Department of Biology, Faculty of Nature and Life Sciences, Earth and Universe Sciences, University Abou- Bekr Belkaïd, BP 119, Imama, Tlemcen, Algeria
  • Sadia MANSOUR, Noureddine DJEBLIb bLaboratoire de pharmacognosie et api-phytothérapie, Département de Biologie, faculté des Sciences de la Nature et de la Vie, Université de Mostaganem, Algérie
  • Mariem BENMAHDJOUB, Khadidja KERZABI-KANOUN aLaboratory of Natural Products, Department of Biology, Faculty of Nature and Life Sciences, Earth and Universe Sciences, University Abou- Bekr Belkaïd, BP 119, Imama, Tlemcen, Algeria
  • Houssam BOUAKLINE cLaboratoire d’anatomie pathologie, hôpital militaire régional universitaire d’Oran, Algérie
  • Wacila BENGUEDDA-RAHAL Valorisation des actions de l’homme pour la protection de l’environnement et application en santé publique, Université Abou Bekr Belkaid, BP 119, Imama, Tlemcen, Algérie
  • Fawzia ATIK-BEKKARA Laboratory of Natural Products, Department of Biology, Faculty of Nature and Life Sciences, Earth and Universe Sciences, University Abou- Bekr Belkaïd, BP 119, Imama, Tlemcen, Algeria

DOI:

https://doi.org/10.46325/jnpra.v2i1.40

Keywords:

Sargassum vulgare, Cladostephus hirsutus, Rissoella verruculosa, Antioxidant activity, acute toxicity, anti-inflammatory activity.

Abstract

The search for natural compounds with pharmaceutical activity indicated marine macroalgae as promising sources to supply novel compounds with potential bioactivities. In this study, three algae from the northwest coast of Algeria Sargassum vulgare, Cladostephus hirsutus and Rissoella verruculosa were investigated for their in vitro antioxidant activity and for their in vivo anti-inflammatory activity. Total phenolic, total flavonoid and flavonol, and condensed tannin contents were determined in crude extracts and petroleum ether, ethyl acetate (EA), dichloromethane and butanol fractions, and aqueous residues. Antioxidant activity was evaluated using several in vitro assays: Total Antioxidant Capacity, Ferric Reducing Antioxidant Power and diphenyl picryl hydrazyl radical scavenging activity. Acute toxicity of the crude extract of C. hirsutus was studied in Swiss albino mice and anti-inflammatory activity was evaluated using carrageenan-induced paw edema. Crude extracts revealed high total antioxidant activity ranging from 1.27 to 1.63 mg ascorbic acid equivalent/gram of dry matter for R. verruculosa and C. hirsutus, respectively. For the three algae, EA fractions showed the highest antioxidant activity by the three assays tested, with up to 67% of DPPH radical scavenging activity and an EC50 of 1.114 mg ml-1 by the ferric reducing power assay for the EA fraction of R. verruculosa. No signs of acute toxicity were observed in the crude extract of C. hirsutus at 150 and 300 mg/kg. Significant and dose-dependent activity was shown against acute inflammation with edema reduction of 58.86% and 71.01% at 150 and 300 mg/kg, respectively, after 6 hours of carrageenan administration.

References

Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G., & Vasanthi, H. R. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food and Chemical Toxicology, 48(1), 187-192.

Balboa, E.M., Conde, E., Moure, A., Falque, E., & Dominguez, H. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 138(2-3), 1764-1785.

Butterfield, D.A., Castenga, A., Pocernich, C.B., Drake, J., Scapagnini, G., & Calabrese, V., (2002). Nutritional approaches to combat oxidative stress in Alzheimer’s diseases. The Journal of Nutritional Biochemistry, 13(8), 444-461.

Chandini, S.K., Ganesan, P., & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107(2), 707-713.

Chatter, R., Othman, R.B., Rabhi, S., Kladi, M., Tarhouni, S., Vagias, C., Roussis, V., Guizani-Tabbane, L., Kharrat, R. (2011). In vivo and in vitro anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red algae Laurencia glandulifera. Marine Drugs, 9(7), 1293-1306.

Cho, M., Lee, H.S., Kang, I.J., Won, M.H., & You, S. (2011). Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry, 127(3), 999-1006.

Connan, S., Goulard, F., Stiger, V., Deslandes, E., & Ar Gall, E. (2004). Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Botanica Marina, 47, 410-416.

Connan, S., Delisle, F., Deslandes, E., & Ar Gall, E. (2006). Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina, 49, 39-46.

Darah, I., & Sheh-Hong, L. (2015). In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pacific Journal of Tropical Biomedicine, 5(9), 785-788.

Demirel, Z., Yilmaz-Koz, F.F., Karabay-Yavasoglu, U.N., Ozdemir, G., & Sukatar, A. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628.

Dore, C.M., das C Faustino Alves, M.G., Will, L.S., Costa, T.G., Sabry, D.A., de Souza Rêgo, LA., Accardo, C.M., Rocha, H.A., Filgueira, L.G., Leite, EL. (2013). A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydrate Polymers, 91(1), 467-475.

Duan, X.J., Zhang, W.W., Li, X.M., & Wang, B.G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37-43.

Eom, S. H., Kim Y. M., & Kim, S. K. (2012). Antimicrobial effect of phlorotannins from marine brown algae. Food and Chemical Toxicology, 50(9), 3251-3255.

Fernando, I. S., Nah, J. W., & Jeon, Y. J. (2016). Potential anti-inflammatory natural products from marine algae. Environmental Toxicology and Pharmacology, 48, 22-30.

Ganesan, P., Kumar, C.S., & Bhaskar, N. (2008). Antioxidant properties of methanol extract and its solvent factions obtained from selected Indian red seaweeds. Bioresource Technology, 99(8), 2717-2723.

Govindasamy, C., Arulpriya, M., & Ruban, P. (2012). Nuclear magnetic resonance analysis for antimicrobial compounds from the red seaweed Gracilaria corticata. Asian Pacific Journal of Tropical Biomedicine, 2(1), S329-S333.

Islam, M.N., Ishita, I.J., Jin, S.E., Choi, R.J., Lee, C.M., Kim, Y.S., Jung, H.A., Choi, J.S. (2013). Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food and Chemical Toxicology, 55, 541-548.

Julkunen-Titto, R. (1985). Phenolic constituents in the leaves of northern Willows methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33(2), 213-217.

Khaled, N., Hiba, M., & Asma, C. (2012). Antioxidant and antifungal activities of Padina pavonica and Sargassum vulgare from the Lebanese Mediterranean Coast. Advances in Environmental Biology, 6(1), 42-48.

Khairy, H.M., & El-Sheikh, M.A. 2015. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi journal of Biological Sciences, 22(5), 623-630.

Kuda, T., Kunii, T., Goto, H., Suzuki, T., & Yano, T. 2007. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chemistry, 103(3), 900-905.

Kumaran, S.P., Kutty, B.C., Chatterji, A., Subrayan, P.P., & Mishra, K.P. (2007). Radioprotection against DNA damage by an extract of Indian green mussel, Perna viridis (L). Journal of Environmental Pathology, Toxicology and Oncology, 26(4), 263-272.

Larsen, T.O., Smedsgaard, J., Nielsen, K.F., Hansen, M.E., & Frisvad, J.C. (2005). Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Natural Product Reports, 22(6), 672-695.

Lee, Y.S., Shin, K.H., Kim, B.K., & Lee, S. (2004). Anti-diabetic activities of fucosterol from

Pelvetia siliquosa. Archives of Pharmacal Research, 27(11), 1120-1122.

López, A., Rico, M., Rivero, A., & Suárez de Tangil, M. (2011). The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry, 125(3), 1104-1109.

Marzocco, S., Di Paola, R., Serraino, I., Sorrentino, R., Meli, R., Mattaceraso, G., Cuzzocrea, S., Pinto, A., Autore, G. (2004). Effect of methylguanidine in carrageenaninduced acute inflammation in the rats. European Journal of Pharmacology, 484(2-3), 341-350.

Mhadhebi, L., Laroche-Clary, A., Robert, J., & Bouraoui, A. (2011). Antioxidant, anti-inflammatory, and antiproliferative activities of organic fractions from the Mediterranean brown seaweed Cystoseira sedoides. Canadian Journal of Physiology and Pharmacology, 89(12), 911-921.

Oyaizu, M. (1986). Studies one products of browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44(6), 307–315.

Paschapur, S. M., Patil, M. B., Kumar, R., & Sachin, R. P. (2009). Evaluation of aqueous extract of leaves of Ocimum kilimandscharicum on wound healing activity in albino wistar rats. International Journal of PharmTech Research. 1, 544-550.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.

Rajauria, G., Foley, B., & Abu-Ghannama, N. (2016). Identification and characterization of phenolic antioxidant compounds from brown Irish seaweed Himanthalia elongata using LC-DAD–ESI-MS/MS. Innovative Food Science & Emerging Technologies, 37, 261-268.

Sabeena Farvin, K.H., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3), 1670-1681.

Sanchez-Moreno, C., Larrauri, J.A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276.

Singleton, V.L., & Rossi, J.A.Jr. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Souza, B.W., Cerqueira, M.A., Martins, J.T., Quintas, M.A., Ferreira, A.C., Teixeira, J.A., & Vicente, AA. (2011). Antioxidant potential of two red seaweeds from the Brazilian coasts. Journal of Agricultural and Food Chemistry, 59(10), 5589-5594.

Trovato, A., Raneri, E., Kouladis, M., Tzakou, O., Taviano, M.F., & Galati, E.M. (2001). Anti-inflammatory and analgesic activity of Hypericum empetrifolium Willd. (Guttiferae). Il Farmaco, 56(5-7), 455-457.

Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D. A., Barrow, C. J. (2006). A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. Journal of Applied Phycology, 18(3), 445-450.

Zhang, W.W., Duan, X.J., Huang, H.L., Zhang, Y., & Wang, B.G. (2007). Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). Journal of Applied Phycology, 19(2), 97-108.

Zhang, C. H., Wu, W. H., Wang, J., & Lan, M. B. (2012). Antioxidant Properties of Polysaccharide from the Brown Seaweed Sargassum graminifolium (Turn.), and Its Effects on Calcium Oxalate Crystallization. Marine drugs, 10(1), 119-130.

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.

Zubia, M., Fabre, M. S., Kerjean, V., Le Lann, K., Stiger-Pouvreau, V., Fauchon, M., & Deslandes, E. (2009). Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry, 116(3), 693-701.

Downloads

Published

2022-11-29

How to Cite

Ghania AISSAOUI, Nabila BELYAGOUBI-BENHAMMOU, Larbi BELYAGOUBIa, Sadia MANSOUR, Noureddine DJEBLIb, Mariem BENMAHDJOUB, Khadidja KERZABI-KANOUN, Houssam BOUAKLINE, Wacila BENGUEDDA-RAHAL, & Fawzia ATIK-BEKKARA. (2022). Assessment of in vitro antioxidant and in vivo anti-inflammatory activities of marine algae from Algerian coast. Journal of Natural Product Research and Applications, 2(1), 38–53. https://doi.org/10.46325/jnpra.v2i1.40

Issue

Section

Research article

Most read articles by the same author(s)